Reiersen, Gyri and Dao, David and Lütjens, Björn and Klemmer, Konstantin and Zhu, Xiao Xiang (2021) Tackling the Overestimation of Forest Carbon with Deep Learning and Aerial Imagery. Tackling Climate Change with Machine Learning Workshop at ICML 2021, 2021-07-23, Virtuell.
PDF
7MB |
Official URL: https://www.climatechange.ai/papers/icml2021/79
Abstract
Forest carbon offsets are increasingly popular and can play a significant role in financing climate mitigation, forest conservation, and reforestation. Measuring how much carbon is stored in forests is, however, still largely done via expensive, timeconsuming, and sometimes unaccountable field measurements. To overcome these limitations, many verification bodies are leveraging machine learning (ML) algorithms to estimate forest carbon from satellite or aerial imagery. Aerial imagery allows for tree species or family classification, which improves on the satellite imagerybased forest type classification. However, aerial imagery is significantly more expensive to collect and it is unclear by how much the higher resolution improves the forest carbon estimation. In this proposal paper, we describe the first systematic comparison of forest carbon estimation from aerial imagery, satellite imagery, and “groundtruth“ field measurements via deep learning-based algorithms for a tropical reforestation project. Our initial results show that forest carbon estimates from satellite imagery can overestimate aboveground biomass by up to 10-times for tropical reforestation projects. The significant difference between aerial and satellite-derived forest carbon measurements shows the potential for aerial imagery-based ML algorithms and raises the importance to extend this study to a global benchmark between options for carbon measurements.
Item URL in elib: | https://elib.dlr.de/146235/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Tackling the Overestimation of Forest Carbon with Deep Learning and Aerial Imagery | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep Learning, AI4EO | ||||||||||||||||||||||||
Event Title: | Tackling Climate Change with Machine Learning Workshop at ICML 2021 | ||||||||||||||||||||||||
Event Location: | Virtuell | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Date: | 23 July 2021 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Deposited On: | 29 Nov 2021 07:45 | ||||||||||||||||||||||||
Last Modified: | 10 Jul 2024 14:32 |
Repository Staff Only: item control page