Luo, Cong and Hua, Yuansheng and Mou, LiChao and Zhu, Xiao Xiang (2021) Improving Land Cover Classification With a Shift-Invariant Center-Focusing Convolutional Neural Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2863-2866. IEEE. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554678.
PDF
4MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9554678
Abstract
Convolutional neural networks (CNNs) are widely employedin remote sensing community. The CNN-based, also knownas patch-based land cover classification method has gained in-creasing attention. However, this method very often requiresthe aid of post-processing, otherwise it is difficult to obtainaccurate boundaries separating different land cover classes.In this paper, we discuss the reason of this phenomenon andpropose a shift-invariant center-focusing (SICF) network todeliver more accurate boundaries to improve the patch-basedland cover classification. The principle of SICF is calculat-ing the class score from a center-focusing area based on ashift-invariant feature extraction module to calibrate predic-tion. We employ three modern CNNs to build correspond-ing SICF networks, the evaluation results indicate that com-pared with the conventional CNNs, the improvements madeby SICF for delivering accurate boundaries in land cover clas-sification are significant.
Item URL in elib: | https://elib.dlr.de/146232/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Improving Land Cover Classification With a Shift-Invariant Center-Focusing Convolutional Neural Network | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554678 | ||||||||||||||||||||
Page Range: | pp. 2863-2866 | ||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | convolutional neural network, shift-invariance, class activation maps, land cover classification | ||||||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 12 July 2021 | ||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Hua, Yuansheng | ||||||||||||||||||||
Deposited On: | 29 Nov 2021 08:31 | ||||||||||||||||||||
Last Modified: | 07 Jun 2024 09:57 |
Repository Staff Only: item control page