Luo, Cong und Hua, Yuansheng und Mou, LiChao und Zhu, Xiao Xiang (2021) Improving Land Cover Classification With a Shift-Invariant Center-Focusing Convolutional Neural Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2863-2866. IEEE. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554678.
PDF
4MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9554678
Kurzfassung
Convolutional neural networks (CNNs) are widely employedin remote sensing community. The CNN-based, also knownas patch-based land cover classification method has gained in-creasing attention. However, this method very often requiresthe aid of post-processing, otherwise it is difficult to obtainaccurate boundaries separating different land cover classes.In this paper, we discuss the reason of this phenomenon andpropose a shift-invariant center-focusing (SICF) network todeliver more accurate boundaries to improve the patch-basedland cover classification. The principle of SICF is calculat-ing the class score from a center-focusing area based on ashift-invariant feature extraction module to calibrate predic-tion. We employ three modern CNNs to build correspond-ing SICF networks, the evaluation results indicate that com-pared with the conventional CNNs, the improvements madeby SICF for delivering accurate boundaries in land cover clas-sification are significant.
elib-URL des Eintrags: | https://elib.dlr.de/146232/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Improving Land Cover Classification With a Shift-Invariant Center-Focusing Convolutional Neural Network | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554678 | ||||||||||||||||||||
Seitenbereich: | Seiten 2863-2866 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | convolutional neural network, shift-invariance, class activation maps, land cover classification | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hua, Yuansheng | ||||||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:31 | ||||||||||||||||||||
Letzte Änderung: | 07 Jun 2024 09:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags