elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization

Iulian, Coca Neagoe and Mihai, Coca and Corina, Vaduva and Datcu, Mihai (2021) Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 11297-11310. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3123120. ISSN 1939-1404.

[img] PDF - Published version
12MB

Official URL: https://ieeexplore.ieee.org/document/9591292

Abstract

Visualization of multispectral images through band selection methods determines an information loss that in utmost cases proves to be critical for the adequate understanding of the represented scene. The R–G–B representation obtained by mapping the visual bands to the R, G, and B channels is highly used due to its great resemblance with the natural color one and aspects perceivable by the human eye. However, despite the similarity in terms of color code, ambiguities between classes such as water and vegetation or atmospheric phenomena like fog, clouds, and smoke that have been penetrated by other bands, remain visible and hinder the process of visualization of the Earth surface. This article presents a set of five different methods to offset the effects caused by ambiguities, fog, light clouds, and smoke by transferring relevant information between bands in order to visually reconstitute those parts of the image affected by atmospheric phenomena. The general concept shared by these methods implies a stacked autoencoder that successfully encompasses the information from all spectral bands into a latent representation used for visualization. Each proposed method is defined by different combination of input and error function formula. Spectral and polar coordinates features represent the possible options for the input, while formulas based on mean squared error or angular spectral distances determine the potential choices in terms of error function definition. The property of angular spectral distance and polar coordinates transformation to obtain illuminant invariant features determined their use in three out of five methods. We evaluate the methods through spectral signature graphical comparison and visual comparison related to the R–G–B representation. We conduct experiments on multiple Sentinel 2 full images.

Item URL in elib:https://elib.dlr.de/146219/
Document Type:Article
Title:Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Iulian, Coca NeagoePolitehnica University of Bucharest, RomaniaUNSPECIFIEDUNSPECIFIED
Mihai, CocaUniversity Politehnica of Bucharest, RomaniaUNSPECIFIEDUNSPECIFIED
Corina, VaduvaUniversity Politehnica of Bucharest, RomaniaUNSPECIFIEDUNSPECIFIED
Datcu, MihaiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:25 November 2021
Journal or Publication Title:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:14
DOI:10.1109/JSTARS.2021.3123120
Page Range:pp. 11297-11310
Publisher:IEEE - Institute of Electrical and Electronics Engineers
Series Name:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN:1939-1404
Status:Published
Keywords:Autoencoder, data visualization, multispectralEarth Observation (EO) images, remote sensing.
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Optical remote sensing
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Otgonbaatar, Soronzonbold
Deposited On:30 Nov 2021 14:03
Last Modified:30 Nov 2021 14:03

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.