Gawlikowski, Jakob und Saha, Sudipan und Kruspe, Anna und Zhu, Xiao Xiang (2022) An Advanced Dirichlet Prior Network for Out-of-distribution Detection in Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5616819. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3140324. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
27MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9668955
Kurzfassung
This article introduces a compressive sensing (CS)-based approach for increasing bistatic synthetic aperture radar (SAR) imaging quality in the context of a multiaperture acquisition. The analyzed data were recorded over an opportunistic bistatic setup including a stationary ground-based-receiver opportunistic C-band bistatic SAR differential interferometry (COBIS) and Sentinel-1 C-band transmitter. Since the terrain observation by progressive scans (TOPS) mode is operated, the receiver can record synchronization pulses and echoed signals from the scene during many apertures. Hence, it is possible to improve the azimuth resolution by exploiting the multiaperture data. The recorded data are not contiguous and a naive integration of the chopped azimuth phase history would generate undesired grating lobes. The proposed processing scheme exploits the natural sparsity characterizing the illuminated scene. For azimuth profiles recovery greedy, convex, and nonconvex CS solvers are analyzed. The sparsifying basis/dictionary is constructed using the synthetically generated azimuth chirp derived considering Sentinel-1 orbital parameters and COBIS position. The chirped-based CS performance is further put in contrast with a Fourier-based CS method and an autoregressive model for signal reconstruction in terms of scene extent limitations and phase restoration efficiency. Furthermore, the analysis of different receiver-looking scenarios conducted to the insertion in the processing chain of a direct and an inverse Keystone transform for range cell migration (RCM) correction to cope with squinted geometries. We provide an extensive set of simulated and real-world results that prove the proposed workflow is efficient both in improving the azimuth resolution and in mitigating the sidelobes.
elib-URL des Eintrags: | https://elib.dlr.de/146186/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | An Advanced Dirichlet Prior Network for Out-of-distribution Detection in Remote Sensing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Januar 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3140324 | ||||||||||||||||||||
Seitenbereich: | Seite 5616819 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Dirichlet Network, Machine Learning, AI4EO, Remote Sensing | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||
Hinterlegt am: | 26 Nov 2021 09:16 | ||||||||||||||||||||
Letzte Änderung: | 14 Mär 2023 16:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags