Ding, L. and Tang, H. and Liu, Yuanyuan and Shi, Yilei and Zhu, Xiao Xiang (2021) Adversarial Shape Learning for Building Extraction in VHR Remote Sensing Images. IEEE Transactions on Image Processing (31), pp. 678-690. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TIP.2021.3134455. ISSN 1057-7149.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/9653801
Abstract
Building extraction in VHR RSIs remains a challenging task due to occlusion and boundary ambiguity problems. Although conventional convolutional neural networks (CNNs) based methods are capable of exploiting local texture and context information, they fail to capture the shape patterns of buildings, which is a necessary constraint in the human recognition. To address this issue, we propose an adversarial shape learning network (ASLNet) to model the building shape patterns that improve the accuracy of building segmentation. In the proposed ASLNet, we introduce the adversarial learning strategy to explicitly model the shape constraints, as well as a CNN shape regularizer to strengthen the embedding of shape features. To assess the geometric accuracy of building segmentation results, we introduced several object-based quality assessment metrics. Experiments on two open benchmark datasets show that the proposed ASLNet improves both the pixel-based accuracy and the object-based quality measurements by a large margin. The code is available at: https://github.com/ggsDing/ASLNet .
Item URL in elib: | https://elib.dlr.de/146185/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Adversarial Shape Learning for Building Extraction in VHR Remote Sensing Images | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 16 December 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Image Processing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1109/TIP.2021.3134455 | ||||||||||||||||||||||||
Page Range: | pp. 678-690 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1057-7149 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Adversarial Shape Learning, Deep Learning, AI4EO, Building Extraction, Remote Sensing | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Deposited On: | 26 Nov 2021 09:13 | ||||||||||||||||||||||||
Last Modified: | 05 Dec 2023 07:41 |
Repository Staff Only: item control page