Ding, L. und Tang, H. und Liu, Yuanyuan und Shi, Yilei und Zhu, Xiao Xiang (2021) Adversarial Shape Learning for Building Extraction in VHR Remote Sensing Images. IEEE Transactions on Image Processing (31), Seiten 678-690. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TIP.2021.3134455. ISSN 1057-7149.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9653801
Kurzfassung
Building extraction in VHR RSIs remains a challenging task due to occlusion and boundary ambiguity problems. Although conventional convolutional neural networks (CNNs) based methods are capable of exploiting local texture and context information, they fail to capture the shape patterns of buildings, which is a necessary constraint in the human recognition. To address this issue, we propose an adversarial shape learning network (ASLNet) to model the building shape patterns that improve the accuracy of building segmentation. In the proposed ASLNet, we introduce the adversarial learning strategy to explicitly model the shape constraints, as well as a CNN shape regularizer to strengthen the embedding of shape features. To assess the geometric accuracy of building segmentation results, we introduced several object-based quality assessment metrics. Experiments on two open benchmark datasets show that the proposed ASLNet improves both the pixel-based accuracy and the object-based quality measurements by a large margin. The code is available at: https://github.com/ggsDing/ASLNet .
elib-URL des Eintrags: | https://elib.dlr.de/146185/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Adversarial Shape Learning for Building Extraction in VHR Remote Sensing Images | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 16 Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Image Processing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/TIP.2021.3134455 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 678-690 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1057-7149 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Adversarial Shape Learning, Deep Learning, AI4EO, Building Extraction, Remote Sensing | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2021 09:13 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 07:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags