Qian, Kun and Wang, Yuanyuan and Zhu, Xiaoxiang (2021) Towards SAR Tomographic Inversion via Sparse Bayesian Learning. In: 13th European Conference on Synthetic Aperture Radar, EUSAR 2021, pp. 977-982. EUSAR 2021, 2021-03-29 - 2021-04-01, Leipzig, Germany. ISBN 978-380075457-1. ISSN 2197-4403.
PDF
299kB |
Official URL: https://www.vde-verlag.de/proceedings-en/455457207.html
Abstract
SAR tomographic inversion (TomoSAR) has been widely employed for 3-D urban mapping. TomoSAR is essentially a spectral estimation problem. Existing algorithms are mostly based on an explicit inversion of the SAR imaging model, which are often computationally expensive for large scale processing. This is especially true for compressive sensing based TomoSAR algorithms. Previous literature showed perspective of using data-driven methods like PCA and kernel PCA to decompose the signal and reduce the computational complexity of parameter inversion. This paper gives a preliminary demonstration of a new data-driven TomoSAR method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms the previously proposed PCA and KPCA methods in estimating the steering vectors of the scatterers. This gives us a perspective of using data-drive approach or combining data-driven and model-driven approach for high precision tomographic inversion for large areas.
Item URL in elib: | https://elib.dlr.de/146035/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Towards SAR Tomographic Inversion via Sparse Bayesian Learning | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | April 2021 | ||||||||||||||||
Journal or Publication Title: | 13th European Conference on Synthetic Aperture Radar, EUSAR 2021 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 977-982 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
ISBN: | 978-380075457-1 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | SAR Tomography, data-driven, sparse Bayesian learning | ||||||||||||||||
Event Title: | EUSAR 2021 | ||||||||||||||||
Event Location: | Leipzig, Germany | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 29 March 2021 | ||||||||||||||||
Event End Date: | 1 April 2021 | ||||||||||||||||
Organizer: | VDI | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Qian, Kun (Admin.), Funktional | ||||||||||||||||
Deposited On: | 25 Nov 2021 11:44 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page