Qian, Kun und Wang, Yuanyuan und Zhu, Xiaoxiang (2021) Towards SAR Tomographic Inversion via Sparse Bayesian Learning. In: 13th European Conference on Synthetic Aperture Radar, EUSAR 2021, Seiten 977-982. EUSAR 2021, 2021-03-29 - 2021-04-01, Leipzig, Germany. ISBN 978-380075457-1. ISSN 2197-4403.
PDF
299kB |
Offizielle URL: https://www.vde-verlag.de/proceedings-en/455457207.html
Kurzfassung
SAR tomographic inversion (TomoSAR) has been widely employed for 3-D urban mapping. TomoSAR is essentially a spectral estimation problem. Existing algorithms are mostly based on an explicit inversion of the SAR imaging model, which are often computationally expensive for large scale processing. This is especially true for compressive sensing based TomoSAR algorithms. Previous literature showed perspective of using data-driven methods like PCA and kernel PCA to decompose the signal and reduce the computational complexity of parameter inversion. This paper gives a preliminary demonstration of a new data-driven TomoSAR method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms the previously proposed PCA and KPCA methods in estimating the steering vectors of the scatterers. This gives us a perspective of using data-drive approach or combining data-driven and model-driven approach for high precision tomographic inversion for large areas.
elib-URL des Eintrags: | https://elib.dlr.de/146035/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Towards SAR Tomographic Inversion via Sparse Bayesian Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | April 2021 | ||||||||||||||||
Erschienen in: | 13th European Conference on Synthetic Aperture Radar, EUSAR 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 977-982 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
ISBN: | 978-380075457-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR Tomography, data-driven, sparse Bayesian learning | ||||||||||||||||
Veranstaltungstitel: | EUSAR 2021 | ||||||||||||||||
Veranstaltungsort: | Leipzig, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 29 März 2021 | ||||||||||||||||
Veranstaltungsende: | 1 April 2021 | ||||||||||||||||
Veranstalter : | VDI | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Qian, Kun (Admin.), Funktional | ||||||||||||||||
Hinterlegt am: | 25 Nov 2021 11:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags