Sundermeyer, Martin and Mousavian, Arsalan and Triebel, Rudolph and Fox, Dieter (2021) Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. In: 2021 IEEE International Conference on Robotics and Automation, ICRA 2021. IEEE International Conference on Robotics and Automation, 2021-05-30 - 2021-06-05, Xian, China (remote). doi: 10.1109/ICRA48506.2021.9561877. ISBN 978-172819077-8. ISSN 1050-4729.
PDF
15MB |
Abstract
Grasping unseen objects in unconstrained, cluttered environments is an essential skill for autonomous robotic manipulation.Despite recent progress in full 6-DoF grasp learning, existing approaches often consist of complex sequential pipelines that possess several potential failure points and run-times unsuitable for closed-loop grasping. Therefore, we propose an end-to-end network that efficiently generates a distribution of 6-DoF parallel-jaw grasps directly from a depth recording of a scene. Our novel grasp representation treats 3D points of the recorded point cloud as potential grasp contacts. By rooting the full 6-DoF grasp pose and width in the observed point cloud, we can reduce the dimensionality of our grasp representation to 4-DoF which greatly facilitates the learning process. Our class-agnostic approach is trained on 17 million simulated grasps and generalizes well to real world sensor data. In a robotic grasping study of unseen objects in structured clutter we achieve over 90% success rate, cutting the failure rate in half compared to a recent state-of-the-art method.
Item URL in elib: | https://elib.dlr.de/145798/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 30 May 2021 | ||||||||||||||||||||
Journal or Publication Title: | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/ICRA48506.2021.9561877 | ||||||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||||||
ISBN: | 978-172819077-8 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | 6-DoF object grasping, unknown objects, point clouds, two-finger gripper, deep learning, sim2real | ||||||||||||||||||||
Event Title: | IEEE International Conference on Robotics and Automation | ||||||||||||||||||||
Event Location: | Xian, China (remote) | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 30 May 2021 | ||||||||||||||||||||
Event End Date: | 5 June 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Terrestrial Assistance Robotics | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Sundermeyer, Martin | ||||||||||||||||||||
Deposited On: | 10 Dec 2021 10:12 | ||||||||||||||||||||
Last Modified: | 07 Jun 2024 08:44 |
Repository Staff Only: item control page