Sundermeyer, Martin und Mousavian, Arsalan und Triebel, Rudolph und Fox, Dieter (2021) Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. In: 2021 IEEE International Conference on Robotics and Automation, ICRA 2021. IEEE International Conference on Robotics and Automation, 2021-05-30 - 2021-06-05, Xian, China (remote). doi: 10.1109/ICRA48506.2021.9561877. ISBN 978-172819077-8. ISSN 1050-4729.
PDF
15MB |
Kurzfassung
Grasping unseen objects in unconstrained, cluttered environments is an essential skill for autonomous robotic manipulation.Despite recent progress in full 6-DoF grasp learning, existing approaches often consist of complex sequential pipelines that possess several potential failure points and run-times unsuitable for closed-loop grasping. Therefore, we propose an end-to-end network that efficiently generates a distribution of 6-DoF parallel-jaw grasps directly from a depth recording of a scene. Our novel grasp representation treats 3D points of the recorded point cloud as potential grasp contacts. By rooting the full 6-DoF grasp pose and width in the observed point cloud, we can reduce the dimensionality of our grasp representation to 4-DoF which greatly facilitates the learning process. Our class-agnostic approach is trained on 17 million simulated grasps and generalizes well to real world sensor data. In a robotic grasping study of unseen objects in structured clutter we achieve over 90% success rate, cutting the failure rate in half compared to a recent state-of-the-art method.
elib-URL des Eintrags: | https://elib.dlr.de/145798/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 30 Mai 2021 | ||||||||||||||||||||
Erschienen in: | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/ICRA48506.2021.9561877 | ||||||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||||||
ISBN: | 978-172819077-8 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | 6-DoF object grasping, unknown objects, point clouds, two-finger gripper, deep learning, sim2real | ||||||||||||||||||||
Veranstaltungstitel: | IEEE International Conference on Robotics and Automation | ||||||||||||||||||||
Veranstaltungsort: | Xian, China (remote) | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 30 Mai 2021 | ||||||||||||||||||||
Veranstaltungsende: | 5 Juni 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Sundermeyer, Martin | ||||||||||||||||||||
Hinterlegt am: | 10 Dez 2021 10:12 | ||||||||||||||||||||
Letzte Änderung: | 07 Jun 2024 08:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags