Li, Qingyu and Mou, LiChao and Hua, Yuansheng and Shi, Yilei and Zhu, Xiao Xiang (2022) Building Footprint Generation Through Convolutional Neural Networks With Attraction Field Representation. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5609017. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3109844. ISSN 0196-2892.
PDF
- Published version
21MB |
Official URL: https://ieeexplore.ieee.org/document/9538384
Abstract
Building footprint generation is a vital task in a wide range of applications, including, to name a few, land use management, urban planning and monitoring, and geographical database updating. Most existing approaches addressing this problem fall back on convolutional neural networks (CNNs) to learn semantic masks of buildings. However, one limitation of their results is blurred building boundaries. To address this, we propose to learn attraction field representation for building boundaries, which is capable of providing an enhanced representation power. Our method comprises two elemental modules: an Img2AFM module and an AFM2Mask module. More specifically, the former aims at learning an attraction field representation conditioned on an input image, which is capable of enhancing building boundaries and suppressing the background. The latter module predicts segmentation masks of buildings using the learned attraction field map. The proposed method is evaluated on three datasets with different spatial resolutions: the ISPRS dataset, the INRIA dataset, and the Planet dataset. From experimental results, we find that the proposed framework can well preserve geometric shapes and sharp boundaries of buildings, which brings significant improvements over other competitors. The trained model and code are available at https://github.com/lqycrystal/AFM_building
Item URL in elib: | https://elib.dlr.de/145755/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Building Footprint Generation Through Convolutional Neural Networks With Attraction Field Representation | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3109844 | ||||||||||||||||||||||||
Page Range: | p. 5609017 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Attraction field map (AFM),building footprint, convolutional neural network (CNN),semantic segmentation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Deposited On: | 18 Nov 2021 13:38 | ||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 14:23 |
Repository Staff Only: item control page