Saha, Sudipan und Zhu, Xiao Xiang (2022) Patch-level unsupervised planetary change detection. IEEE Geoscience and Remote Sensing Letters, 19, Seite 6504405. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3130862. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
680kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9627685
Kurzfassung
Change detection (CD) is critical for analyzing data collected by planetary exploration missions, e.g., for identification of new impact craters. However, CD is still a relatively new topic in the context of planetary exploration. Sheer variation of planetary data makes CD much more challenging than in the case of Earth observation (EO). Unlike CD for EO, patch-level decision is preferred in planetary exploration as it is difficult to obtain perfect pixelwise alignment/co-registration between the bi-temporal planetary images. Lack of labeled bi-temporal data impedes supervised CD. To overcome these challenges, we propose an unsupervised CD method that exploits a pre-trained feature extractor to obtain bi-temporal deep features that are further processed using global max-pooling to obtain patch-level feature description. Bi-temporal patch-level features are further analyzed based on difference to determine whether a patch is changed. Additionally, a self-supervised method is proposed to estimate the decision boundary between the changed and unchanged patches. Experimental results on three planetary CD datasets from two different planetary bodies (Mars and Moon) demonstrate that the proposed method often outperforms supervised planetary CD methods. Code is available at https://gitlab.lrz.de/ai4eo/cd/-/tree/main/planetaryCDUnsup.
elib-URL des Eintrags: | https://elib.dlr.de/145750/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Patch-level unsupervised planetary change detection | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 19 | ||||||||||||
DOI: | 10.1109/LGRS.2021.3130862 | ||||||||||||
Seitenbereich: | Seite 6504405 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | unsupervised learning, earth Observation, change detection ai4eo | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||
Hinterlegt am: | 19 Nov 2021 09:19 | ||||||||||||
Letzte Änderung: | 13 Jan 2023 11:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags