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Abstract— Change detection (CD) is critical for analyzing data
collected by planetary exploration missions, e.g., for identification
of new impact craters. However, CD is still a relatively new topic
in the context of planetary exploration. Sheer variation of plan-
etary data makes CD much more challenging than in the case of
Earth observation (EO). Unlike CD for EO, patch-level decision is
preferred in planetary exploration as it is difficult to obtain per-
fect pixelwise alignment/coregistration between the bi-temporal
planetary images. Lack of labeled bi-temporal data impedes
supervised CD. To overcome these challenges, we propose an
unsupervised CD method that exploits a pretrained feature
extractor to obtain bi-temporal deep features that are further
processed using global max-pooling to obtain patch-level feature
description. Bi-temporal patch-level features are further analyzed
based on difference to determine whether a patch is changed.
Additionally, a self-supervised method is proposed to estimate the
decision boundary between the changed and unchanged patches.
Experimental results on three planetary CD datasets from two
different planetary bodies (Mars and Moon) demonstrate that
the proposed method often outperforms supervised planetary
CD methods. Code is available at https://gitlab.lrz.de/ai4eo/
cd/-/tree/main/planetaryCDUnsup.

Index Terms— Change detection (CD), planetary exploration,
pooling, transfer learning, unsupervised learning.

I. INTRODUCTION

INTEREST in planetary exploration missions has increased
significantly in the last decade [1] as such missions enrich

our knowledge about the solar system [2]. A crucial role in
most such missions is played by the scientific imaging instru-
ments that are used for various purposes, including planetary
surface characterization and spectral mapping for mineralogy.
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Large volume of images are currently being captured by
ongoing planetary imaging investigations, e.g., high-resolution
imaging science experiment (HiRISE) and ConTeXtCamera
(CTX) on the MarsReconnaissance Orbiter [3], [4].

Change detection (CD) is one of the most studied topics
in Earth observation (EO). CD plays crucial role in several
EO tasks, e.g., disaster management [5], urban monitoring [6],
and military applications. Despite its established significance
in EO, CD has not been explored much in context of planetary
exploration. However, just like EO, CD may play a significant
role in planetary explorations. As detailed by Kerner et al. [3],
one such application of CD in planetary exploration is to mon-
itor the changes induced by meteorite impact. Such impacts
strongly alter the landscape of the planets. Another such
application is monitoring of recurring slope lineae (RSL) that
appear/disappear on surface of Mars on timescales close to a
year.

Kerner et al. [3] studied several supervised methods in con-
text of planetary CD. However, when talking about CD for EO,
unsupervised methods are more popular than the supervised
ones [6]. This is because collection of labeled multitemporal
training data is difficult in context of CD. Moreover, even
if training data are collected for one particular application
or geography, supervised methods do not generalize well for
other applications or geography. While variation of geography
limits applicability of supervised CD methods for EO (i.e., one
planet), it certainly limits their applicability when considering
many planets and their hundreds of moons. This is confirmed
by the work of Kerner et al. [3], where accuracy significantly
drops when a model trained on HiRISE RSL dataset is applied
on CTX meteorite impacts dataset. This shows the necessity of
moving beyond supervised methods for planetary CD. Another
difference between planetary CD and CD for EO is that
the latter assumes near-perfect pixelwise alignment between
bi-temporal input while such alignment is difficult to obtain
for the former. Due to this, previous work on planetary CD [3]
focuses on patch-level CD instead of pixelwise CD.

Deep transfer learning methods that exploit a pretrained
model for bi-temporal feature extraction and comparison
have shown excellent performance in different CD applica-
tions [5], [6]. Inspired by this we propose a deep transfer
learning based CD method that ingests bi-temporal patches
and processes it through a set of convolution layers (pretrained
network). The bi-temporal feature maps are processed using a
global max-pooling to summarize the content of both patches
and account for possible presence of misalignment. Finally,
the difference of features after global max-pooling are taken,
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thresholded using a decision boundary obtained with a self-
supervised method, to determine whether the considered patch
is changed/unchanged.

The key contributions of this letter are as follows.

1) In context of planetary CD, this letter proposes an
unsupervised deep transfer learning based method that
can determine whether a pair of bi-temporal patches are
changed, even if they are not perfectly coregistered.

2) This letter further proposes a method using pseudo
unchanged pairs to determine threshold for distinguish-
ing changed and unchanged patches.

3) The letter validates the proposed method on three diverse
planetary CD datasets, two of which show misalignment
between pretemporal and post-temporal images.

We organize the rest of the letter as follows. Related works
are discussed in Section II. Section III outlines the proposed
method. Datasets and experimental results are detailed in
Section IV. Finally, we conclude the letter in Section V.

II. RELATED WORK

Considering relevance to our work, in this Section, we
briefly discuss unsupervised CD and planetary CD.

A. Unsupervised CD in EO

Prior to the emergence of deep learning, most unsupervised
CD methods for EO used the concept of pixelwise image
differencing, i.e., change vector analysis (CVA) [7]. Many
variants of CVA, e.g., parcel CVA (PCVA) [8] and robust
CVA (RCVA) [9], incorporated the notion of spatial context
in CVA. Deep learning-based unsupervised CD methods are
generally based on transfer learning [6]. Deep CVA (DCVA)
[6] is one such framework that incorporates CVA with pre-
trained deep network-based feature extraction. DCVA has
shown excellent performance in many tasks, e.g., building
CD [5] and agricultural monitoring [10]. Another class of
unsupervised CD methods preclassifies some samples with
high confidence as changed/unchanged using some traditional
approach and further uses those confident samples for training
a CD model [11]. Such methods have limited applicability
in planetary CD as error introduced by sensor or unseen
geographic characteristics may significantly impact the choice
of confident samples.

B. CD in Planetary Exploration

Kerner et al. [3] presented a detailed study of the supervised
methods for planetary CD. To the best of our knowledge, this
is the only work on planetary CD. They specifically promoted
the use of convolutional autoencoder along with different
supervised classifiers for planetary CD. For the scenario where
training data is not available, they reused the supervised
CD model trained on another dataset. However, their results
clearly show that such straightforward reuse of supervised
model does not perform satisfactorily when the source and
target domains are significantly different, e.g., when source
domain is HiRISE RSL dataset and the target domain is CTX
meteorite impacts dataset.

Fig. 1. Proposed patch-level planetary unsupervised CD technique.

III. PROPOSED METHOD

Let us consider two sets of I unlabeled patches X1 =
{x1i,∀i = 1, . . . , I } and X2 = {x2i,∀i = 1, . . . , I }, captured
over same planetary surface at time t1 and t2. Spatial dimension
of the patches is R × C . We assume that x1i and x2i represent
same area/object, however, may not be properly aligned, which
is in stark contrast to near-perfect alignment assumption made
in most CD methods [6], [9]. Instead of pixel-level CD, we
are interested to assign each patch pair a label: changed or
unchanged.

Both x1i and x2i are separately processed through a
multilayered pretrained convolutional neural network (CNN)
feature extractor, originally trained for some other task
(see Section III-A). Pixelwise features are summarized
using global max-pooling to obtain f1i and f2i, corre-
sponding to x1i and x2i, respectively, (see Section III-B).
They are compared to obtain a deep feature difference ρi ,
larger value of which indicates the patch-pair x1i and x2i

is more likely to be changed. We can obtain a binary
changed/unchanged decision by comparing ρi to a thresh-
old τ (see Section III-C). We determine the optimum value
of τ using a self-supervised mechanism that does not require
any label information and uses only the pretemporal sets
of patches X1 (see Section III-D). The proposed patch-level
CD method is shown in Fig. 1.

While the proposed method is intended for patch-level CD,
pixelwise CD map can also be obtained, which is briefly
discussed in Section III-E.

A. Deep Features Extraction

Similar to the DCVA framework [6], bi-temporal patches
x1i and x2i are separately processed using a pretrained CNN
to obtain features corresponding to both x1i and x2i. In this
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work, we use VGG-16 model [12] trained on natural image
dataset, however, any other suitable pretrained model can also
be used Sumbul et al. [13]. By applying this network on our
target planetary images, we reuse the trained CNN model
to transfer the visual descriptors learned by the CNN for
its original training task to solve the planetary CD problem.
As previous works have shown [6], the intermediate layers
are more suitable for transfer learning on targets that are
semantically different from original training data, as the lower
layers of the CNN capture primitive features like edges and
the very last layers capture features specific to the original
training dataset. Following this, we use the sixth convolution
layer of VGG-16 [12] for feature extraction. The dimension
of the feature maps are R′ × C ′ × D where D is the number
of features. R′ may or may not be equal to R depending on
whether there are downsampling operations in the pretrained
feature extractor. Unlike [6], due to possible misalignment
between x1i and x2i, straightforward pixelwise comparison of
x1i and x2i may lead to errors.

Please note that the above-mentioned process of feature
extraction does not require prior availability of any planetary
data, labeled or unlabeled.

B. Patch Summarization

The output feature maps obtained in the previous step are
sensitive to the location of the features in the input patches.
While this property is useful to obtain pixelwise CD map if
x1i and x2i are perfectly aligned, this may cause error in our
case, as x1i and x2i are possibly misaligned. For patch-level
CD, we need to summarize/downsample the feature maps in
a way such that summarization process is robust to the shift
in the position of the feature in the image.

We use global pooling operation as a global image descrip-
tor, i.e., to summarize the patch. In contrast to popularly
used average pooling, we use max pooling. Average pooling
assumes that the feature descriptors in a patch are independent
and identically distributed. Thus, average pooling is sensi-
tive to more frequently occurring descriptors, a phenomenon
known as visual burstiness [14] that hinders average pool-
ing from capturing feature relevant to distinguish different
samples.

The use of spatial max pooling was introduced by
LeCun et al. [15] and was later extended for global max
pooling [16]. Remarkably, global max pooling achieves partial
invariance to small translations because the max of a patch
depends only on the single largest element in the given patch.
If a small translation does not bring in a new largest element
at the edge of the patch or does not remove the largest element
by taking it outside of the patch, then the outcome of global
max pooling does not change.

Global max pooling summarizes R′ × C ′ × D feature
maps obtained from x1i and x2i to D-dimensional f1i and f2i,
respectively.

C. Determining Whether Patch Is Changed

f1i is subtracted from f2i and �1 norm is applied on difference
to obtain a change indicator ρi . Denoting the steps from deep

feature extraction to obtaining change indicator as g

ρi = g(x1i, x2i). (1)

Larger value of ρi indicates the patch-pair x1i and x2i are
more likely to be changed. We can determine whether the
patch-pair x1i and x2i are changed or not by comparing ρi to
a threshold τ .

D. Threshold Determination

We further propose an automatic self-supervised method
of determining τ used in Section III-C. Taking an unlabeled
patch x1i from X1, we obtain a noisy version x′

1i as

x′
1i = h(x1i) (2)

where h(.) is equivalent to applying Gaussian noise and
shifting the patch by few pixels. In practice, we applied shift of
up to 10 pixels. x1i and x′

1i can be treated as pseudo unchanged
pair as they represent the same scene however, with slight
differences as commonly observed in multitemporal planetary
images. Thus, x1i and x′

1i are processed following the steps in
Sections III-B–III-D to obtain ρ ′

i :

ρ ′
i = g

(
x1i, x′

1i

)
(3)

ρ ′
i is a sample ρ value for an unchanged pair. Similarly, I such

values can be generated for i = 1, . . . , I , which provides us
a distribution of ρ for the unchanged pairs. An upper bound
for ρ for the unchanged pairs can be used as threshold τ to
distinguish the unchanged patch pairs from the changed ones.
τ can be obtained as

τ = max
(
ρ ′

1, ρ
′
2, . . . , ρ

′
I

)
. (4)

In practice, accounting for possible anomaly we exclude the
top 5 percentile of ρ ′

i while calculating τ .

E. Pixelwise CD

If the proposed method determines a patch-pair x1i and
x2i to be changed, pixelwise CD map can also be obtained
if the patches are reasonably aligned, by pixelwise compar-
ison of feature maps obtained in Section III-A using the
DCVA framework [6].

IV. EXPERIMENTAL RESULTS

A. Datasets

Following planetary datasets are used for evaluation of the
proposed method.

1) HiRISE RSL: RSL are dark and narrow features that are
thought to be formed due to the shallow subsurface water
flow. They incrementally fade and recur throughout the
year. RSL dataset collected by Kerner et al. [3] focuses
on Garni crater on Mars. The images in the dataset are
collected using the HiRISE camera which is onboard
the Mars Reconnaissance Orbiter. The images are of
approximately 30 cm/pixel. The dataset is formed using
red channel [3]. A total of 254 pairs of 100 × 100 pixels
size (examples in Fig. 2) are used in the test set [3]. The
dataset also has training and validation set that are not
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Fig. 2. Example from HiRISE RSL dataset: (a) prechange patch;
(b) postchange patch; (c) false color composition created using R: prechange,
G: postchange, B: prechange patch; and (d) pixelwise CD map, as detected
by the proposed method.

Fig. 3. Example from CTX meteorite impact dataset: (a) prechange patch;
(b) postchange patch; and (c) pixelwise CD map, as detected by the proposed
method.

used by us since our proposed method is unsupervised
and thus do not require training.

2) CTX Meteorite Impacts: Many planets including Mars
are continuously impacted by meteorites. It is important
to know the occurrence and location of such impact as
this data helps scientists to estimate the current cratering
rate in our solar system [17], [18]. The meterorite impact
dataset collected by Kerner et al. [3] is composed of
96 images pairs (example in Fig. 3) that are collected
by CTX onboard the Mars Reconnaissance Orbiter with
a spatial resolution of 6 m/pixel and size of 150 ×
150 pixels. Compared to HiRISE RSL, the dataset size
is much smaller, 254 test cases versus only 96 test cases.

3) Lunar Reconnaissance Orbiter Camera (LROC) Moon
Dataset: In this dataset, surface changes are the result
of meteorite impacts and a spacecraft landing. The bi-
temporal images in this dataset are misregistered by as
many as 40 pixels, making it a challenging dataset. The
test set consists of five changed pairs and five unchanged
pairs of 100 × 100 pixels each (example in Fig. 4).

B. Experiment Objectives

The only existing work on planetary CD [3] experimented
on a set of supervised learning paradigms (combination of
classifier and input representation) to find out suitable super-
vised learning paradigm for planetary CD. This experiment

Fig. 4. Example from LROC (Moon) dataset: (a) prechange patch;
(b) postchange patch; and (c) pixelwise CD map as detected by the proposed
method.

TABLE I

COMPARISON OF THE PROPOSED UNSUPERVISED METHOD WITH
THE SUPERVISED METHODS IN [3] FOR HIRISE RSL

was performed on HiRISE RSL dataset. They further experi-
mented on CTX meterorite impacts dataset and LROC dataset
to investigate if models trained on HiRISE RSL dataset can
be transferred for CD in those datasets.

We compare our proposed unsupervised CD method to the
following methods.

1) All supervised and transfer learning paradigms in [3].
2) Unsupervised RCVA [9]. While RCVA is proposed

for pixel-based prediction, we designed a patch-based
version of it by following similar strategies used for the
proposed method.

3) A variant of the proposed method using global average
pooling instead of max pooling.

4) A variant of the proposed method where instead
of the proposed thresholding scheme, the ρi values
corresponding to all patch pairs are clustered using
k-means clustering with k = 2 to obtain two clusters,
corresponding to the changed and unchanged patches,
respectively.

C. Result Analysis

1) HiRISE RSL Dataset: Two supervised methods slightly
outperform (by 0.4%) the proposed unsupervised method.
However, surprisingly the proposed method outperforms as
many as four supervised methods (Table I). The proposed
method outperforms Inception-v3 based three different meth-
ods, Inception-v3 with signed difference, Inception v-3 with
bottleneck representation, and Inception-v3 with composite
grayscale. For more details of these supervised methods, refer
to [3]. This result shows that proposed method’s performance
is almost comparable to the best performing supervised model.
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TABLE II

COMPARISON OF THE PROPOSED UNSUPERVISED METHOD WITH THE
TRANSFER LEARNING CAPABILITY OF THE SUPERVISED METHODS

IN [3] FOR CTX METEORITE IMPACT DATASET

The proposed method also outperforms its average pooling
based version, k-means clustering based version, and unsuper-
vised RCVA. Moreover, Table I shows result of the proposed
method using fifth and seventh convolution layer of VGG-16
for feature extraction. One example from HiRISE dataset is
shown in Fig. 2 that shows the proposed method is capable to
indicate the location of change.

2) CTX Meteorite Impacts Dataset: Here we investigate
the proposed method to the transfer learning capability of
the supervised methods in [3]. As tabulated in Table II,
the proposed method outperforms all supervised methods on
CTX meteorite impacts dataset. Notably this dataset has some
pairs with significant misalignment. Superior result of the
proposed method indicates that it is able to handle mis-
alignment by effectively summarizing patch with global max-
pooling. Moreover, this proves the superiority of the proposed
unsupervised method in comparison to merely transferring
supervised CD model from another dataset. An example from
the CTX meteorite impacts dataset is shown in Fig. 3.

3) LROC Moon Dataset: In spite of strong misalignment
error in this dataset, the proposed method is able to distinguish
the changed patches from the unchanged ones. The proposed
method successfully labels 9 out of 10 test patches, in compari-
son to the method in [3] that can only correctly label 8 patches.
Proposed method also outperforms its average pooling variant,
RCVA (both correctly label 7 patches), and k-means clustering
based variant (correctly labels 8 patches). This shows that
global max-pooling successfully summarizes the content of
bi-temporal feature and subsequent comparison effectively
identifies the changed patches. Example of a prediction on this
dataset is shown in Fig. 4 that shows the proposed method is
capable to indicate the location of impact despite misalignment
in dataset.

V. CONCLUSION

To the best of our knowledge, this letter introduces deep
transfer learning based unsupervised CD for first time in the
context of planetary exploration. Humankind has reached far
beyond Earth and missions to new destinations are launched
periodically. This poses us with challenge of processing
multitemporal planetary data with huge variations. The pro-
posed unsupervised method enables us to process varieties
of unlabeled multitemporal planetary data without using any
label. Toward this, the proposed method cleverly exploits deep
transfer learning along with automatic threshold determination.

Though unsupervised, proposed method outperforms most of
the existing supervised methods. This shows the proposed
method as a suitable option when labeled multitemporal plane-
tary data is not available. Considering the varieties of planetary
mission and applications, it is impossible to always have
abundant labeled multitemporal data. Though proposed for
multispectral input, the proposed method can be easily modi-
fied for hyperspectral input by choosing a different pretrained
network. Though proposed in the context of planetary CD,
proposed method can be extended for any CD applications that
require patch-level decision. Our future work will experiment
on more planetary data. To conclude, our work is one step
further in better understanding the temporal evolution of space
and other planets.
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