Saha, Sudipan and Kondmann, Lukas and Song, Qian and Zhu, Xiao Xiang (2021) Change Detection in Hyperdimensional Images using Untrained Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 11029-11041. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3121556. ISSN 1939-1404.
PDF
- Published version
6MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/9582825
Abstract
Deep transfer-learning-based change detection methods are dependent on the availability of sensor-specific pretrained feature extractors. Such feature extractors are not always available due to lack of training data, especially for hyperspectral sensors and other hyperdimensional images. Moreover models trained on easily available multispectral (RGB/RGB-NIR) images cannot be reused on such hyperdimensional images due to their irregular number of bands. While hyperdimensional images show large number of spectral bands, they generally show much less spatial complexity, thus reducing the requirement of large receptive fields of convolution filters. Recent works in the computer vision have shown that even untrained deep models can yield remarkable result in some tasks like super-resolution and surface reconstruction. This motivates us to make a bold proposition that untrained lightweight deep model, initialized with some weight initialization strategy, can be used to extract useful semantic features from bi-temporal hyperdimensional images. Based on this proposition, we design a novel change detection framework for hyperdimensional images by extracting bitemporal features using an untrained model and further comparing the extracted features using deep change vector analysis to distinguish changed pixels from the unchanged ones. We further use the deep change hypervectors to cluster the changed pixels into different semantic groups. We conduct experiments on four change detection datasets: three hyperspectral datasets and a hyperdimensional polarimetric synthetic aperture radar dataset. The results clearly demonstrate that the proposed method is suitable for change detection in hyperdimensional remote sensing data.
Item URL in elib: | https://elib.dlr.de/145719/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Change Detection in Hyperdimensional Images using Untrained Models | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 20 October 2021 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3121556 | ||||||||||||||||||||
Page Range: | pp. 11029-11041 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Change Detection, Earth Observation, AI4EO | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 25 Nov 2021 11:48 | ||||||||||||||||||||
Last Modified: | 05 Dec 2023 07:40 |
Repository Staff Only: item control page