elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Change Detection in Hyperdimensional Images using Untrained Models

Saha, Sudipan und Kondmann, Lukas und Song, Qian und Zhu, Xiao Xiang (2021) Change Detection in Hyperdimensional Images using Untrained Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 11029-11041. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3121556. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9582825

Kurzfassung

Deep transfer-learning-based change detection methods are dependent on the availability of sensor-specific pretrained feature extractors. Such feature extractors are not always available due to lack of training data, especially for hyperspectral sensors and other hyperdimensional images. Moreover models trained on easily available multispectral (RGB/RGB-NIR) images cannot be reused on such hyperdimensional images due to their irregular number of bands. While hyperdimensional images show large number of spectral bands, they generally show much less spatial complexity, thus reducing the requirement of large receptive fields of convolution filters. Recent works in the computer vision have shown that even untrained deep models can yield remarkable result in some tasks like super-resolution and surface reconstruction. This motivates us to make a bold proposition that untrained lightweight deep model, initialized with some weight initialization strategy, can be used to extract useful semantic features from bi-temporal hyperdimensional images. Based on this proposition, we design a novel change detection framework for hyperdimensional images by extracting bitemporal features using an untrained model and further comparing the extracted features using deep change vector analysis to distinguish changed pixels from the unchanged ones. We further use the deep change hypervectors to cluster the changed pixels into different semantic groups. We conduct experiments on four change detection datasets: three hyperspectral datasets and a hyperdimensional polarimetric synthetic aperture radar dataset. The results clearly demonstrate that the proposed method is suitable for change detection in hyperdimensional remote sensing data.

elib-URL des Eintrags:https://elib.dlr.de/145719/
Dokumentart:Zeitschriftenbeitrag
Titel:Change Detection in Hyperdimensional Images using Untrained Models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Saha, Sudipansudipan.saha (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kondmann, Lukaslukas.kondmann (at) dlr.dehttps://orcid.org/0000-0002-2253-6936NICHT SPEZIFIZIERT
Song, QianQian.Song (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:20 Oktober 2021
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2021.3121556
Seitenbereich:Seiten 11029-11041
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Change Detection, Earth Observation, AI4EO
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:25 Nov 2021 11:48
Letzte Änderung:05 Dez 2023 07:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.