Traoré, Kalifou René Bala and Camero, Andrés and Zhu, Xiao Xiang (2021) Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS. In: 30th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1-7. Workshop on Data Science meets Optimization (DSO), 2021-08-19 - 2021-08-20, Online.
PDF
1MB |
Official URL: https://drive.google.com/file/d/1i5mINwUg0xJDWsAilQ7Gpq7SGvXD5q7t/view
Abstract
Lots of effort in neural architecture search (NAS) research has been dedicated to algorithmic development, aiming at designing more efficient and less costly methods. Nonetheless, the investigation of the initialization of these techniques remain scarce, and currently most NAS methodologies rely on stochastic initialization procedures, because acquiring information prior to search is costly. However, the recent availability of NAS benchmarks have enabled low computational resources prototyping. In this study, we propose to accelerate a NAS algorithm using a data-driven initialization technique, leveraging the availability of NAS benchmarks. Particularly, we proposed a two-step methodology. First, a calibrated clustering analysis of the search space is performed. Second, the centroids are extracted and used to initialize a NAS algorithm. We tested our proposal using Aging Evolution, an evolutionary algorithm, on NAS-bench-101. The results show that, compared to a random initialization, a faster convergence and a better performance of the final solution is achieved.
Item URL in elib: | https://elib.dlr.de/145629/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||
Title: | Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 22 June 2021 | ||||||||||||||||
Journal or Publication Title: | 30th International Joint Conference on Artificial Intelligence (IJCAI) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | AutoML, Neural Architecture Search, Initialization | ||||||||||||||||
Event Title: | Workshop on Data Science meets Optimization (DSO) | ||||||||||||||||
Event Location: | Online | ||||||||||||||||
Event Type: | Workshop | ||||||||||||||||
Event Start Date: | 19 August 2021 | ||||||||||||||||
Event End Date: | 20 August 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||
Deposited On: | 18 Nov 2021 10:00 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page