Traoré, Kalifou René Bala und Camero, Andrés und Zhu, Xiao Xiang (2021) Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS. In: 30th International Joint Conference on Artificial Intelligence (IJCAI), Seiten 1-7. Workshop on Data Science meets Optimization (DSO), 2021-08-19 - 2021-08-20, Online.
PDF
1MB |
Offizielle URL: https://drive.google.com/file/d/1i5mINwUg0xJDWsAilQ7Gpq7SGvXD5q7t/view
Kurzfassung
Lots of effort in neural architecture search (NAS) research has been dedicated to algorithmic development, aiming at designing more efficient and less costly methods. Nonetheless, the investigation of the initialization of these techniques remain scarce, and currently most NAS methodologies rely on stochastic initialization procedures, because acquiring information prior to search is costly. However, the recent availability of NAS benchmarks have enabled low computational resources prototyping. In this study, we propose to accelerate a NAS algorithm using a data-driven initialization technique, leveraging the availability of NAS benchmarks. Particularly, we proposed a two-step methodology. First, a calibrated clustering analysis of the search space is performed. Second, the centroids are extracted and used to initialize a NAS algorithm. We tested our proposal using Aging Evolution, an evolutionary algorithm, on NAS-bench-101. The results show that, compared to a random initialization, a faster convergence and a better performance of the final solution is achieved.
elib-URL des Eintrags: | https://elib.dlr.de/145629/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 22 Juni 2021 | ||||||||||||||||
Erschienen in: | 30th International Joint Conference on Artificial Intelligence (IJCAI) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | AutoML, Neural Architecture Search, Initialization | ||||||||||||||||
Veranstaltungstitel: | Workshop on Data Science meets Optimization (DSO) | ||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsbeginn: | 19 August 2021 | ||||||||||||||||
Veranstaltungsende: | 20 August 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Traoré, Mr René | ||||||||||||||||
Hinterlegt am: | 18 Nov 2021 10:00 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags