Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021) Compact Neural Architecture Search for Local Climate Zones Classification. In: 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021 (Scopus; ISSN: ), pp. 393-398. The 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2021-10-06 - 2021-10-08, Online. doi: 10.14428/esann/2021.ES2021-55. ISBN ISBN 978287587082-7.
PDF
1MB |
Official URL: https://www.esann.org/sites/default/files/proceedings/2021/ES2021-55.pdf
Abstract
State-of-the-art Computer Vision models achieve impressive performance but with an increasing complexity. Great advances have been made towards automatic model design, but accounting for model performance and low complexity is still an open challenge. In this study, we propose a neural architecture search strategy for high performance low complexity classification models, that combines an efficient search algorithm with mechanisms for reducing complexity. We tested our proposal on a real World remote sensing problem, the Local Climate Zone classification. The results show that our proposal achieves state-of-the-art performance, while being at least 91.8% more compact in terms of size and FLOPs.
Item URL in elib: | https://elib.dlr.de/145623/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Compact Neural Architecture Search for Local Climate Zones Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 20 July 2021 | ||||||||||||||||
Journal or Publication Title: | 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021 (Scopus; ISSN: ) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.14428/esann/2021.ES2021-55 | ||||||||||||||||
Page Range: | pp. 393-398 | ||||||||||||||||
ISBN: | ISBN 978287587082-7 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Model selection, AutoML | ||||||||||||||||
Event Title: | The 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) | ||||||||||||||||
Event Location: | Online | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 6 October 2021 | ||||||||||||||||
Event End Date: | 8 October 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||
Deposited On: | 19 Nov 2021 09:06 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page