Traoré, Kalifou René und Camero, Andrés und Zhu, Xiao Xiang (2021) Compact Neural Architecture Search for Local Climate Zones Classification. In: 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021 (Scopus; ISSN: ), Seiten 393-398. The 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2021-10-06 - 2021-10-08, Online. doi: 10.14428/esann/2021.ES2021-55. ISBN ISBN 978287587082-7.
PDF
1MB |
Offizielle URL: https://www.esann.org/sites/default/files/proceedings/2021/ES2021-55.pdf
Kurzfassung
State-of-the-art Computer Vision models achieve impressive performance but with an increasing complexity. Great advances have been made towards automatic model design, but accounting for model performance and low complexity is still an open challenge. In this study, we propose a neural architecture search strategy for high performance low complexity classification models, that combines an efficient search algorithm with mechanisms for reducing complexity. We tested our proposal on a real World remote sensing problem, the Local Climate Zone classification. The results show that our proposal achieves state-of-the-art performance, while being at least 91.8% more compact in terms of size and FLOPs.
elib-URL des Eintrags: | https://elib.dlr.de/145623/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Compact Neural Architecture Search for Local Climate Zones Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 Juli 2021 | ||||||||||||||||
Erschienen in: | 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021 (Scopus; ISSN: ) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.14428/esann/2021.ES2021-55 | ||||||||||||||||
Seitenbereich: | Seiten 393-398 | ||||||||||||||||
ISBN: | ISBN 978287587082-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Model selection, AutoML | ||||||||||||||||
Veranstaltungstitel: | The 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) | ||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Oktober 2021 | ||||||||||||||||
Veranstaltungsende: | 8 Oktober 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Traoré, Mr René | ||||||||||||||||
Hinterlegt am: | 19 Nov 2021 09:06 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags