Requena-Mesa, Christian and Benson, Vitus and Reichstein, Markus and Runge, Jakob and Denzler, Joachim (2021) EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021. CVPR EarthVision Workshop, June 19, 2021, Online. doi: 10.1109/CVPRW53098.2021.00124. ISSN 2160-7508.
![]() |
PDF
- Only accessible within DLR
5MB |
Abstract
Satellite images are snapshots of the Earth surface. We propose to forecast them. We frame Earth surface forecasting as the task of predicting satellite imagery conditioned on future weather. EarthNet2021 is a large dataset suitable for training deep neural networks on the task. It contains Sentinel 2 satellite imagery at 20 m resolution, matching topography and mesoscale (1.28 km) meteorological variables packaged into 32000 samples. Additionally we frame EarthNet2021 as a challenge allowing for model intercomparison. Resulting forecasts will greatly improve (> ×50) over the spatial resolution found in numerical models. This allows localized impacts from extreme weather to be redicted, thus supporting downstream applications such as crop yield prediction, forest health assessments or biodiversity monitoring. Find data, code, and how to participate at www.earthnet.tech.
Item URL in elib: | https://elib.dlr.de/145613/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1109/CVPRW53098.2021.00124 | ||||||||||||||||||||||||
ISSN: | 2160-7508 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Earth surface forecasting, dataset, challenge | ||||||||||||||||||||||||
Event Title: | CVPR EarthVision Workshop | ||||||||||||||||||||||||
Event Location: | Online | ||||||||||||||||||||||||
Event Type: | Workshop | ||||||||||||||||||||||||
Event Dates: | June 19, 2021 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R - no assignment | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - no assignment | ||||||||||||||||||||||||
Location: | Jena | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science > Datamangagement and Analysis | ||||||||||||||||||||||||
Deposited By: | Käding, Christoph | ||||||||||||||||||||||||
Deposited On: | 18 Nov 2021 15:56 | ||||||||||||||||||||||||
Last Modified: | 17 Jul 2023 13:38 |
Repository Staff Only: item control page