Huang, Zhongling and Datcu, Mihai (2021) Urban Area Analysis in Single-polarized SAR Images Based On Unsupervised Deep Learning. In: 13th European Conference on Synthetic Aperture Radar, EUSAR 2021, pp. 1-5. VDE Verlag. EUSAR 2021, 2021-04-29 - 2021-04-01, Leipzig, Germany. ISBN 978-380075457-1. ISSN 2197-4403.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9472590
Abstract
Urban mapping from remote sensing images is important for monitoring urbanization. In this paper, we propose an unsupervised learning algorithm for high-resolution single-polarized synthetic aperture radar (SAR) image to extract man-made targets for urban area analysis. The proposed method mainly focuses on the special physical characteristics of man-made targets that are different from natural areas. Without polarimetric information, we propose the sub-band scattering pattern based on time-frequency analysis to describe the physical properties of targets, and then design an end-to-end neural network to learn the latent features and potential clusters. The proposed method is evaluated on three different urban areas acquired at C-band by Sentinel-1 and Gaofen-3, and X-band by TerraSAR-X, respectively. The experiments present the visualized result of man-made targets extraction and analyze some specific targets to show the effectiveness of our proposed method.
Item URL in elib: | https://elib.dlr.de/144971/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Urban Area Analysis in Single-polarized SAR Images Based On Unsupervised Deep Learning | ||||||||||||
Authors: |
| ||||||||||||
Date: | 1 March 2021 | ||||||||||||
Journal or Publication Title: | 13th European Conference on Synthetic Aperture Radar, EUSAR 2021 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
Page Range: | pp. 1-5 | ||||||||||||
Editors: |
| ||||||||||||
Publisher: | VDE Verlag | ||||||||||||
ISSN: | 2197-4403 | ||||||||||||
ISBN: | 978-380075457-1 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | urban area, unsupervised deep learning | ||||||||||||
Event Title: | EUSAR 2021 | ||||||||||||
Event Location: | Leipzig, Germany | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 29 April 2021 | ||||||||||||
Event End Date: | 1 April 2021 | ||||||||||||
Organizer: | VDE | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||
Deposited On: | 12 Nov 2021 11:57 | ||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page