Huang, Zhongling und Datcu, Mihai (2021) Urban Area Analysis in Single-polarized SAR Images Based On Unsupervised Deep Learning. In: 13th European Conference on Synthetic Aperture Radar, EUSAR 2021, Seiten 1-5. VDE Verlag. EUSAR 2021, 2021-04-29 - 2021-04-01, Leipzig, Germany. ISBN 978-380075457-1. ISSN 2197-4403.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9472590
Kurzfassung
Urban mapping from remote sensing images is important for monitoring urbanization. In this paper, we propose an unsupervised learning algorithm for high-resolution single-polarized synthetic aperture radar (SAR) image to extract man-made targets for urban area analysis. The proposed method mainly focuses on the special physical characteristics of man-made targets that are different from natural areas. Without polarimetric information, we propose the sub-band scattering pattern based on time-frequency analysis to describe the physical properties of targets, and then design an end-to-end neural network to learn the latent features and potential clusters. The proposed method is evaluated on three different urban areas acquired at C-band by Sentinel-1 and Gaofen-3, and X-band by TerraSAR-X, respectively. The experiments present the visualized result of man-made targets extraction and analyze some specific targets to show the effectiveness of our proposed method.
elib-URL des Eintrags: | https://elib.dlr.de/144971/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Urban Area Analysis in Single-polarized SAR Images Based On Unsupervised Deep Learning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 1 März 2021 | ||||||||||||
Erschienen in: | 13th European Conference on Synthetic Aperture Radar, EUSAR 2021 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | VDE Verlag | ||||||||||||
ISSN: | 2197-4403 | ||||||||||||
ISBN: | 978-380075457-1 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | urban area, unsupervised deep learning | ||||||||||||
Veranstaltungstitel: | EUSAR 2021 | ||||||||||||
Veranstaltungsort: | Leipzig, Germany | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 29 April 2021 | ||||||||||||
Veranstaltungsende: | 1 April 2021 | ||||||||||||
Veranstalter : | VDE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 12 Nov 2021 11:57 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags