Chaudhuri, Ushashi and Banerjee, Biplab and Bhattacharya, Avik and Datcu, Mihai (2021) Attention-Driven Cross-Modal Remote Sensing Image Retrieval. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4783-4786. Institute of Electrical and Electronics Engineers. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554838. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
860kB |
Official URL: https://ieeexplore.ieee.org/document/9554838
Abstract
In this work, we address a cross-modal retrieval problem in remote sensing (RS) data. A cross-modal retrieval problem is more challenging than the conventional uni-modal data retrieval frameworks as it requires learning of two completely different data representations to map onto a shared feature space. For this purpose, we chose a photo-sketch RS database. We exploit the data modality comprising more spatial information (sketch) to extract the other modality features (photo) with cross-attention networks. This sketch-attended photo features are more robust and yield better retrieval results. We validate our proposal by performing experiments on the benchmarked Earth on Canvas dataset. We show a boost in the overall performance in comparison to the existing literature. Besides, we also display the Grad-CAM visualizations of the trained model's weights to highlight the framework's efficacy.
Item URL in elib: | https://elib.dlr.de/144964/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Attention-Driven Cross-Modal Remote Sensing Image Retrieval | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554838 | ||||||||||||||||||||
Page Range: | pp. 4783-4786 | ||||||||||||||||||||
Publisher: | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Cross-modal retrieval, Remote Sensing, Sketch-based image retrieval, Attention network, Deep learning | ||||||||||||||||||||
Event Title: | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS | ||||||||||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||
Organizer: | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Deposited On: | 18 Nov 2021 12:30 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page