Chaudhuri, Ushashi und Banerjee, Biplab und Bhattacharya, Avik und Datcu, Mihai (2021) Attention-Driven Cross-Modal Remote Sensing Image Retrieval. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4783-4786. Institute of Electrical and Electronics Engineers. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554838. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
860kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554838
Kurzfassung
In this work, we address a cross-modal retrieval problem in remote sensing (RS) data. A cross-modal retrieval problem is more challenging than the conventional uni-modal data retrieval frameworks as it requires learning of two completely different data representations to map onto a shared feature space. For this purpose, we chose a photo-sketch RS database. We exploit the data modality comprising more spatial information (sketch) to extract the other modality features (photo) with cross-attention networks. This sketch-attended photo features are more robust and yield better retrieval results. We validate our proposal by performing experiments on the benchmarked Earth on Canvas dataset. We show a boost in the overall performance in comparison to the existing literature. Besides, we also display the Grad-CAM visualizations of the trained model's weights to highlight the framework's efficacy.
elib-URL des Eintrags: | https://elib.dlr.de/144964/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Attention-Driven Cross-Modal Remote Sensing Image Retrieval | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554838 | ||||||||||||||||||||
Seitenbereich: | Seiten 4783-4786 | ||||||||||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Cross-modal retrieval, Remote Sensing, Sketch-based image retrieval, Attention network, Deep learning | ||||||||||||||||||||
Veranstaltungstitel: | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS | ||||||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Hinterlegt am: | 18 Nov 2021 12:30 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags