Chaudhuri, Ushashi und Banerjee, Biplab und Bhattacharya, Avik und Datcu, Mihai (2021) Attention-Driven Cross-Modal Remote Sensing Image Retrieval. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4783-4786. Institute of Electrical and Electronics Engineers. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554838. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
|
PDF
860kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554838
Kurzfassung
In this work, we address a cross-modal retrieval problem in remote sensing (RS) data. A cross-modal retrieval problem is more challenging than the conventional uni-modal data retrieval frameworks as it requires learning of two completely different data representations to map onto a shared feature space. For this purpose, we chose a photo-sketch RS database. We exploit the data modality comprising more spatial information (sketch) to extract the other modality features (photo) with cross-attention networks. This sketch-attended photo features are more robust and yield better retrieval results. We validate our proposal by performing experiments on the benchmarked Earth on Canvas dataset. We show a boost in the overall performance in comparison to the existing literature. Besides, we also display the Grad-CAM visualizations of the trained model's weights to highlight the framework's efficacy.
| elib-URL des Eintrags: | https://elib.dlr.de/144964/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Attention-Driven Cross-Modal Remote Sensing Image Retrieval | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Juli 2021 | ||||||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/IGARSS47720.2021.9554838 | ||||||||||||||||||||
| Seitenbereich: | Seiten 4783-4786 | ||||||||||||||||||||
| Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 2153-7003 | ||||||||||||||||||||
| ISBN: | 978-1-6654-0369-6 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Cross-modal retrieval, Remote Sensing, Sketch-based image retrieval, Attention network, Deep learning | ||||||||||||||||||||
| Veranstaltungstitel: | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS | ||||||||||||||||||||
| Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||||||
| Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
| Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
| Hinterlegt am: | 18 Nov 2021 12:30 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags