Ghozatlou, Omid and Datcu, Mihai (2021) Hybrid GAN and Spectral Angular Distance for Cloud Removal. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2695-2698. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554891. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
3MB |
Official URL: https://ieeexplore.ieee.org/document/9554891
Abstract
This paper aims to present a new algorithm to remove thin clouds and retain information in corrupted images without the use of auxiliary data. By injecting physical properties into the cycle consistent generative adversarial network (GAN), we were able to convert a cloudy multispectral image to a cloudless image. To recover information beneath clouds and shadows we create a synthetic multispectral space to obtain illumination invariant features. Multispectral vectors were transformed from Cartesian coordinates to Polar coordinates to obtain spectral angular distance (SAD) then we employed them as input to train the deep neural network (DNN). Afterward, the outputs of DNN were transformed to Cartesian coordinates to obtain shadow and cloud-free multispectral images. The proposed method, Hybrid GAN-SAD yields trustworthy reconstructed results because of exploiting transparent information from certain multispectral bands to recover uncorrupted images.
Item URL in elib: | https://elib.dlr.de/144963/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Hybrid GAN and Spectral Angular Distance for Cloud Removal | ||||||||||||
Authors: |
| ||||||||||||
Date: | July 2021 | ||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554891 | ||||||||||||
Page Range: | pp. 2695-2698 | ||||||||||||
Publisher: | Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Cloud Removal, Generative Adversarial Networks (GANs), Polar Coordinates, Multispectral Satellite Images | ||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||
Organizer: | Institute of Electrical and Electronics Engineers | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||
Deposited On: | 18 Nov 2021 12:27 | ||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page