Ghozatlou, Omid und Datcu, Mihai (2021) Hybrid GAN and Spectral Angular Distance for Cloud Removal. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2695-2698. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554891. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554891
Kurzfassung
This paper aims to present a new algorithm to remove thin clouds and retain information in corrupted images without the use of auxiliary data. By injecting physical properties into the cycle consistent generative adversarial network (GAN), we were able to convert a cloudy multispectral image to a cloudless image. To recover information beneath clouds and shadows we create a synthetic multispectral space to obtain illumination invariant features. Multispectral vectors were transformed from Cartesian coordinates to Polar coordinates to obtain spectral angular distance (SAD) then we employed them as input to train the deep neural network (DNN). Afterward, the outputs of DNN were transformed to Cartesian coordinates to obtain shadow and cloud-free multispectral images. The proposed method, Hybrid GAN-SAD yields trustworthy reconstructed results because of exploiting transparent information from certain multispectral bands to recover uncorrupted images.
elib-URL des Eintrags: | https://elib.dlr.de/144963/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Hybrid GAN and Spectral Angular Distance for Cloud Removal | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2021 | ||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554891 | ||||||||||||
Seitenbereich: | Seiten 2695-2698 | ||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Cloud Removal, Generative Adversarial Networks (GANs), Polar Coordinates, Multispectral Satellite Images | ||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||
Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 18 Nov 2021 12:27 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags