Coca, Mihai and Datcu, Mihai (2021) Anomaly Detection in Post Fire Assessment. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 8620-8623. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554169. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
33MB |
Official URL: https://ieeexplore.ieee.org/document/9554169
Abstract
Over the last few years, natural disasters elevated dangerously in terms of immensity and prevalence over areas covered by forest and urban woodlands. Fast-spreading nature of the wildfires determine quick uncontrollable situations' causing significant effects in short periods. Despite increased difficulty in image processing approaches due to temporal resolution, complexity of spectral bands and illumination conditions, imagery data streams available from sun-synchronous satellites provide geospatial intelligence in monitoring and preventing fire threats. In this paper, we proposed a local scale burned area estimation framework that employs multispectral images in a deep learning architecture for detecting burned surfaces at patch level. This goal is accomplished by using an autoencoder (AE) network in which the latent feature layer learns normal background distribution, beneficial to background reconstruction. Furthermore, an outlier detection method (OCSVM) is used with aggregated features, latent and covariance components, in order to estimate burned coverage. Our method operates on data retrieved from Sentinel-2 (S2) constellation streaming source, which mainly contain normal scenes and limited fire affected spots.
Item URL in elib: | https://elib.dlr.de/144962/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Anomaly Detection in Post Fire Assessment | ||||||||||||
Authors: |
| ||||||||||||
Date: | July 2021 | ||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554169 | ||||||||||||
Page Range: | pp. 8620-8623 | ||||||||||||
Publisher: | Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Deep Learning, Anomaly Detection,Wildfires, OCSVM, Burned Area Estimation, Sentinel-2 | ||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||
Organizer: | Institute of Electrical and Electronics Engineers | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||
Deposited On: | 18 Nov 2021 12:25 | ||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page