Coca, Mihai und Datcu, Mihai (2021) Anomaly Detection in Post Fire Assessment. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 8620-8623. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554169. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
33MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554169
Kurzfassung
Over the last few years, natural disasters elevated dangerously in terms of immensity and prevalence over areas covered by forest and urban woodlands. Fast-spreading nature of the wildfires determine quick uncontrollable situations' causing significant effects in short periods. Despite increased difficulty in image processing approaches due to temporal resolution, complexity of spectral bands and illumination conditions, imagery data streams available from sun-synchronous satellites provide geospatial intelligence in monitoring and preventing fire threats. In this paper, we proposed a local scale burned area estimation framework that employs multispectral images in a deep learning architecture for detecting burned surfaces at patch level. This goal is accomplished by using an autoencoder (AE) network in which the latent feature layer learns normal background distribution, beneficial to background reconstruction. Furthermore, an outlier detection method (OCSVM) is used with aggregated features, latent and covariance components, in order to estimate burned coverage. Our method operates on data retrieved from Sentinel-2 (S2) constellation streaming source, which mainly contain normal scenes and limited fire affected spots.
elib-URL des Eintrags: | https://elib.dlr.de/144962/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Anomaly Detection in Post Fire Assessment | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2021 | ||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554169 | ||||||||||||
Seitenbereich: | Seiten 8620-8623 | ||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Deep Learning, Anomaly Detection,Wildfires, OCSVM, Burned Area Estimation, Sentinel-2 | ||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||
Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 18 Nov 2021 12:25 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags