Coca, Iulia and Vaduva, Corina and Datcu, Mihai (2021) Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2102-2105. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553735. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
589kB |
Official URL: https://ieeexplore.ieee.org/document/9553735
Abstract
Remote sensing multispectral images are extensively used by applications in various fields. The degradation generated by haze or smoke negatively influences the visual analysis of the represented scene. In this paper, a deep neural network based method is proposed to address the visualization improvement of hazy and smoky images. The method is able to entirely exploit the information contained by all spectral bands, especially by the SWIR bands, which are usually not contaminated by haze or smoke. A dimensionality reduction of the spectral signatures or angular signatures is rapidly obtained by using a stacked autoencoders (SAE) trained based on contaminated images only. The latent characteristics obtained by the encoder are mapped to the R - G - B channels for visualization. The haze and smoke removal results of several Sentinel 2 scenes present an increased contrast and show the haze hidden areas from the initial natural color images.
Item URL in elib: | https://elib.dlr.de/144959/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 27 July 2021 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553735 | ||||||||||||||||
Page Range: | pp. 2102-2105 | ||||||||||||||||
Publisher: | Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Remote sensing, multispectral, haze and smoke removal, autoencoder, data visualization | ||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||
Organizer: | Institute of Electrical and Electronics Engineers | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||
Deposited On: | 18 Nov 2021 12:17 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page