Coca, Iulia und Vaduva, Corina und Datcu, Mihai (2021) Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2102-2105. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553735. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
589kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9553735
Kurzfassung
Remote sensing multispectral images are extensively used by applications in various fields. The degradation generated by haze or smoke negatively influences the visual analysis of the represented scene. In this paper, a deep neural network based method is proposed to address the visualization improvement of hazy and smoky images. The method is able to entirely exploit the information contained by all spectral bands, especially by the SWIR bands, which are usually not contaminated by haze or smoke. A dimensionality reduction of the spectral signatures or angular signatures is rapidly obtained by using a stacked autoencoders (SAE) trained based on contaminated images only. The latent characteristics obtained by the encoder are mapped to the R - G - B channels for visualization. The haze and smoke removal results of several Sentinel 2 scenes present an increased contrast and show the haze hidden areas from the initial natural color images.
elib-URL des Eintrags: | https://elib.dlr.de/144959/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 27 Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553735 | ||||||||||||||||
Seitenbereich: | Seiten 2102-2105 | ||||||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Remote sensing, multispectral, haze and smoke removal, autoencoder, data visualization | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||
Hinterlegt am: | 18 Nov 2021 12:17 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags