elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture

Coca, Iulia und Vaduva, Corina und Datcu, Mihai (2021) Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2102-2105. Institute of Electrical and Electronics Engineers. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553735. ISBN 978-1-6654-0369-6. ISSN 2153-7003.

[img] PDF
589kB

Offizielle URL: https://ieeexplore.ieee.org/document/9553735

Kurzfassung

Remote sensing multispectral images are extensively used by applications in various fields. The degradation generated by haze or smoke negatively influences the visual analysis of the represented scene. In this paper, a deep neural network based method is proposed to address the visualization improvement of hazy and smoky images. The method is able to entirely exploit the information contained by all spectral bands, especially by the SWIR bands, which are usually not contaminated by haze or smoke. A dimensionality reduction of the spectral signatures or angular signatures is rapidly obtained by using a stacked autoencoders (SAE) trained based on contaminated images only. The latent characteristics obtained by the encoder are mapped to the R - G - B channels for visualization. The haze and smoke removal results of several Sentinel 2 scenes present an increased contrast and show the haze hidden areas from the initial natural color images.

elib-URL des Eintrags:https://elib.dlr.de/144959/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Coca, IuliaUniversity POLITEHNICA of BucharestNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vaduva, CorinaUniversity Politehnica BucharestNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:27 Juli 2021
Erschienen in:International Geoscience and Remote Sensing Symposium (IGARSS)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IGARSS47720.2021.9553735
Seitenbereich:Seiten 2102-2105
Verlag:Institute of Electrical and Electronics Engineers
ISSN:2153-7003
ISBN:978-1-6654-0369-6
Status:veröffentlicht
Stichwörter:Remote sensing, multispectral, haze and smoke removal, autoencoder, data visualization
Veranstaltungstitel:IGARSS 2021
Veranstaltungsort:Brussels, Belgium
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Juli 2021
Veranstaltungsende:16 Juli 2021
Veranstalter :Institute of Electrical and Electronics Engineers
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:18 Nov 2021 12:17
Letzte Änderung:24 Apr 2024 20:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.