Focsa, Adrian and Anghel, Andrei and Datcu, Mihai and Toma, Ștefan-Adrian (2021) Mixed Compressive Sensing Back-Projection for SAR Focusing on Geocoded Grid. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 4298-4309. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3072208. ISSN 1939-1404.
PDF
- Published version
6MB |
Official URL: https://ieeexplore.ieee.org/document/9399783
Abstract
This article presents a new scheme called 2-D mixed compressive sensing back-projection (CS-BP-2D), for synthetic aperture radar (SAR) imaging on a geocoded grid, in a single measurement vector frame. The back-projection linear operator is derived in matrix form and a patched-based approach is proposed for reducing the dimensions of the dictionary. Spatial compressibility of the radar image is exploited by constructing the sparsity basis using the back-projection focusing framework and fast solving the reconstruction problem through the orthogonal matching pursuit algorithm. An artifact reduction filter inspired by the synthetic point spread function is used in postprocessing. The results are validated for simulated and real-world SAR data. Sentinel-1 C-band raw data in both monostatic and space-borne transmitter/stationary receiver bistatic configurations are tested. We show that CS-BP-2D can focus both monostatic and bistatic SAR images, using fewer measurements than the classical approach, while preserving the amplitude, the phase, and the position of the targets. Furthermore, the SAR image quality is enhanced and also the storage burden is reduced by storing only the recovered complex-valued points and their corresponding locations.
Item URL in elib: | https://elib.dlr.de/144957/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Mixed Compressive Sensing Back-Projection for SAR Focusing on Geocoded Grid | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | April 2021 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3072208 | ||||||||||||||||||||
Page Range: | pp. 4298-4309 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Back-projection, bistatic, compressive sensing(CS), focusing, synthetic aperture radar (SAR) | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Deposited On: | 18 Nov 2021 12:42 | ||||||||||||||||||||
Last Modified: | 25 Nov 2021 13:51 |
Repository Staff Only: item control page