Chaudhuri, Ushashi and Dey, Subhadip and Datcu, Mihai and Banerjee, Biplab and Bhattacharya, Avik (2021) Interband Retrieval and Classification Using the Multilabeled Sentinel-2 BigEarthNet Archive. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 9884-9898. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3112209. ISSN 1939-1404.
PDF
- Published version
5MB |
Official URL: https://ieeexplore.ieee.org/document/9537619
Abstract
Conventional remote sensing data analysis techniques have a significant bottleneck of operating on a selectively chosen small-scale dataset. Availability of an enormous volume of data demands handling large-scale, diverse data, which have been made possible with neural network-based architectures. This article exploits the contextual information capturing ability of deep neural networks, particularly investigating multispectral band properties from Sentinel-2 image patches. Besides, an increase in the spatial resolution often leads to nonlinear mixing of land-cover types within a target resolution cell. We recognize this fact and group the bands according to their spatial resolutions, and propose a classification and retrieval framework. We design a representation learning framework for classifying the multispectral data by first utilizing all the bands and then using the grouped bands according to their spatial resolutions. We also propose a novel triplet-loss function for multilabeled images and use it to design an interband group retrieval framework. We demonstrate its effectiveness over the conventional triplet-loss function. Finally, we present a comprehensive discussion of the obtained results. We thoroughly analyze the performance of the band groups on various land-cover and land-use areas from agro-forestry regions, water bodies, and human-made structures. Experimental results for the classification and retrieval framework on the benchmarked BigEarthNet dataset exhibit marked improvements over existing studies.
Item URL in elib: | https://elib.dlr.de/144955/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Interband Retrieval and Classification Using the Multilabeled Sentinel-2 BigEarthNet Archive | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 27 October 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3112209 | ||||||||||||||||||||||||
Page Range: | pp. 9884-9898 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Interband retrieval, multilabel classification,multilabel cross triplet loss, multimodal classification, Sentinel-2,land-cover classification | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||||||
Deposited On: | 18 Nov 2021 12:39 | ||||||||||||||||||||||||
Last Modified: | 25 Nov 2021 13:50 |
Repository Staff Only: item control page