Chaudhuri, Ushashi und Banerjee, Biplab und Bhattacharya, Avik und Datcu, Mihai (2022) A Zero-Shot Sketch-Based Intermodal Object Retrieval Scheme for Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 19, Seite 8007705. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3056392. ISSN 1545-598X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9353713
Kurzfassung
Domain-agnostic data retrieval has lately become essential amidst the availability of large-scale data from different types of sensors. However, the unavailability of a sufficient amount of samples of certain classes during training curtails the utility of existing retrieval models in remote sensing (RS) applications. Here, we propose a novel framework for zero-shot intermodal data retrieval of RS data. Thereupon, we design an encoder-decoder structure that ensures enhanced overlapping among the two data domains utilizing cross-triplet and cross-projection loss functions. Furthermore, we propose a sketch-based representation of the RS database Earth on Canvas with diverse classes. We perform a thorough benchmarking of this data set and demonstrate that the proposed framework outperforms state-of-the-art methods for zero-shot sketch-based retrieval framework for RS data.
| elib-URL des Eintrags: | https://elib.dlr.de/144953/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | A Zero-Shot Sketch-Based Intermodal Object Retrieval Scheme for Remote Sensing Images | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 27 Januar 2022 | ||||||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| Band: | 19 | ||||||||||||||||||||
| DOI: | 10.1109/LGRS.2021.3056392 | ||||||||||||||||||||
| Seitenbereich: | Seite 8007705 | ||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Cross-modal retrieval, database, earth on canvas (EoC), information retrieval, remote sensing (RS), sketches, zero-shot | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
| Hinterlegt am: | 02 Nov 2021 13:10 | ||||||||||||||||||||
| Letzte Änderung: | 01 Mär 2023 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags