Chaudhuri, Ushashi and Banerjee, Biplab and Bhattacharya, Avik and Datcu, Mihai (2022) Attention-Driven Graph Convolution Network for Remote Sensing Image Retrieval. IEEE Geoscience and Remote Sensing Letters, 19, p. 8019705. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3105448. ISSN 1545-598X.
PDF
- Published version
1MB |
Official URL: https://ieeexplore.ieee.org/document/9526616
Abstract
Graph convolution networks (GCNs) are useful in remote sensing (RS) image retrieval. It is found to be effective because, in a graph representation, the relative geometrical interactions between different regions (or segments) are appropriately captured, along with their region-wise features in their region adjacency graphs. Also, the attention mechanism has often been applied to the nodes to highlight the essential features in each node. In this regard, a significant amount of high-frequency information is missed since each image segment is effectively summarized within a single node. To account for this and increase the learning capacity, we propose to attend over the edge/adjacency matrix to highlight the interactions among meaningful regions that contribute to supervised learning from images. We exploit this novel edge attention mechanism together with node attention to highlight essential image context by allowing more importance to the meaningful neighboring regions that highlight a relevant node. We implement the proposed context-attended GCN framework for image retrieval on the benchmarked UC-Merced and the PatternNet datasets. We observe a notable improvement in the results compared to the state of the art.
Item URL in elib: | https://elib.dlr.de/144951/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Attention-Driven Graph Convolution Network for Remote Sensing Image Retrieval | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | January 2022 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 19 | ||||||||||||||||||||
DOI: | 10.1109/LGRS.2021.3105448 | ||||||||||||||||||||
Page Range: | p. 8019705 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Series Name: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Attention network, graph convolution networks (GCNs), image retrieval, remote sensing (RS), Siamese architecture | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Deposited On: | 02 Nov 2021 13:03 | ||||||||||||||||||||
Last Modified: | 14 Mar 2023 16:34 |
Repository Staff Only: item control page