Chaudhuri, Ushashi und Banerjee, Biplab und Bhattacharya, Avik und Datcu, Mihai (2022) Attention-Driven Graph Convolution Network for Remote Sensing Image Retrieval. IEEE Geoscience and Remote Sensing Letters, 19, Seite 8019705. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3105448. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9526616
Kurzfassung
Graph convolution networks (GCNs) are useful in remote sensing (RS) image retrieval. It is found to be effective because, in a graph representation, the relative geometrical interactions between different regions (or segments) are appropriately captured, along with their region-wise features in their region adjacency graphs. Also, the attention mechanism has often been applied to the nodes to highlight the essential features in each node. In this regard, a significant amount of high-frequency information is missed since each image segment is effectively summarized within a single node. To account for this and increase the learning capacity, we propose to attend over the edge/adjacency matrix to highlight the interactions among meaningful regions that contribute to supervised learning from images. We exploit this novel edge attention mechanism together with node attention to highlight essential image context by allowing more importance to the meaningful neighboring regions that highlight a relevant node. We implement the proposed context-attended GCN framework for image retrieval on the benchmarked UC-Merced and the PatternNet datasets. We observe a notable improvement in the results compared to the state of the art.
elib-URL des Eintrags: | https://elib.dlr.de/144951/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Attention-Driven Graph Convolution Network for Remote Sensing Image Retrieval | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Januar 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||
DOI: | 10.1109/LGRS.2021.3105448 | ||||||||||||||||||||
Seitenbereich: | Seite 8019705 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Name der Reihe: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Attention network, graph convolution networks (GCNs), image retrieval, remote sensing (RS), Siamese architecture | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Hinterlegt am: | 02 Nov 2021 13:03 | ||||||||||||||||||||
Letzte Änderung: | 14 Mär 2023 16:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags