Cao, Xiangyong and Yao, Jing and Fu, Xueyang and Bi, Haixia and Hong, Danfeng (2021) An Enhanced 3-D Discrete Wavelet Transform for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 18 (6), pp. 1104-1108. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.2990407. ISSN 1545-598X.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/9089248
Abstract
In the classification of hyperspectral image (HSI), there exists a common issue that the collected HSI data set is always contaminated by various noise (e.g., Gaussian, stripe, and deadline), degrading the classification results. To tackle this issue, we modify the 3-dimensional discrete wavelet transform (3DDWT) method by considering the noise effect on feature quality and propose an enhanced 3DDWT (E-3DDWT) approach to extract the feature and meanwhile alleviate the noise. Specifically, the proposed E-3DDWT method first applies classical 3DDWT method to the HSI data cube and thus can generate eight subcubes in each level. Then, the stripe noise is concentrated into several subcubes due to its spatial vertical property. Finally, we abandon these subcubes and obtain the feature cube by stacking the remaining ones. After acquiring the feature, we then adopt the convolutional neural network (CNN) model with an active learning strategy for classification since CNN has been verified to be a state-of-the-art feature extraction method for HSI classification, and active learning strategy can alleviate the insufficient labeled sample issue to some extent. In addition, we apply the Markov random field to enhance the final categorized results. Experiments on two synthetically striped data sets show that our proposed approach achieves better categorized results than other advanced methods.
Item URL in elib: | https://elib.dlr.de/144442/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | An Enhanced 3-D Discrete Wavelet Transform for Hyperspectral Image Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | June 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 18 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.2990407 | ||||||||||||||||||||||||
Page Range: | pp. 1104-1108 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Classification, hyperspectral image (HSI), noise,wavelet transform | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Optical remote sensing | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 08 Oct 2021 12:55 | ||||||||||||||||||||||||
Last Modified: | 08 Oct 2021 12:55 |
Repository Staff Only: item control page