Cao, Xiangyong und Yao, Jing und Fu, Xueyang und Bi, Haixia und Hong, Danfeng (2021) An Enhanced 3-D Discrete Wavelet Transform for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 18 (6), Seiten 1104-1108. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.2990407. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9089248
Kurzfassung
In the classification of hyperspectral image (HSI), there exists a common issue that the collected HSI data set is always contaminated by various noise (e.g., Gaussian, stripe, and deadline), degrading the classification results. To tackle this issue, we modify the 3-dimensional discrete wavelet transform (3DDWT) method by considering the noise effect on feature quality and propose an enhanced 3DDWT (E-3DDWT) approach to extract the feature and meanwhile alleviate the noise. Specifically, the proposed E-3DDWT method first applies classical 3DDWT method to the HSI data cube and thus can generate eight subcubes in each level. Then, the stripe noise is concentrated into several subcubes due to its spatial vertical property. Finally, we abandon these subcubes and obtain the feature cube by stacking the remaining ones. After acquiring the feature, we then adopt the convolutional neural network (CNN) model with an active learning strategy for classification since CNN has been verified to be a state-of-the-art feature extraction method for HSI classification, and active learning strategy can alleviate the insufficient labeled sample issue to some extent. In addition, we apply the Markov random field to enhance the final categorized results. Experiments on two synthetically striped data sets show that our proposed approach achieves better categorized results than other advanced methods.
elib-URL des Eintrags: | https://elib.dlr.de/144442/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | An Enhanced 3-D Discrete Wavelet Transform for Hyperspectral Image Classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juni 2021 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 18 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.2990407 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1104-1108 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Classification, hyperspectral image (HSI), noise,wavelet transform | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Hinterlegt am: | 08 Okt 2021 12:55 | ||||||||||||||||||||||||
Letzte Änderung: | 08 Okt 2021 12:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags