Hong, Danfeng and Gao, Lianru and Wu, Xin and Yao, Jing and Zhang, Bing (2021) Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification. In: 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021, pp. 1-4. WHISPERS 2021, 24.-26. März 2021, Amsterdam/NL. doi: 10.1109/WHISPERS52202.2021.9484014. ISBN 978-166543601-4. ISSN 2158-6276.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484014
Abstract
Graph convolutional networks (GCNs) have been success-fully and widely applied in computer vision and machinelearning fields. As a powerful tool, GCNs have recentlyreceived increasing attention in the remote sensing commu-nity, e.g., hyperspectral image (HSI) classification. However,the application ability of GCNs in identifying the materi-als via spectral signatures remains limited, since traditionalGCNs fail to extract node features for large-scale graphs ef-ficiently. Also, simultaneous consideration of all samplesin GCNs tends to obtain poor representations, possibly dueto the vanishing gradient problem. To this end, we in thispaper develop a novel mini-batch GCN (miniGCN) for HSimage classification. More importantly, miniGCN not onlycan effectively train the network via mini-batch sampling ina supervised way, but also directly infer new samples (out-of-sample) without re-training GCNs. Experiments conductedon two commonly-used HSI datasets demonstrate the superi-ority of miniGCN over other state-of-the-art network archi-tectures.
Item URL in elib: | https://elib.dlr.de/144440/ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||
Title: | Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification | ||||||||||||||||||
Authors: |
| ||||||||||||||||||
Date: | March 2021 | ||||||||||||||||||
Journal or Publication Title: | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 | ||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||
Open Access: | No | ||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||
DOI : | 10.1109/WHISPERS52202.2021.9484014 | ||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||
ISSN: | 2158-6276 | ||||||||||||||||||
ISBN: | 978-166543601-4 | ||||||||||||||||||
Status: | Published | ||||||||||||||||||
Keywords: | Classification, deep learning, graph con-volutional network, hyperspectral image, mini-batch | ||||||||||||||||||
Event Title: | WHISPERS 2021 | ||||||||||||||||||
Event Location: | Amsterdam/NL | ||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||
Event Dates: | 24.-26. März 2021 | ||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||
Deposited On: | 08 Oct 2021 12:17 | ||||||||||||||||||
Last Modified: | 12 Oct 2021 10:09 |
Repository Staff Only: item control page