Hong, Danfeng and Gao, Lianru and Wu, Xin and Yao, Jing and Zhang, Bing (2021) Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification. In: 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021, pp. 1-4. WHISPERS 2021, 2021-03-24 - 2021-03-26, Amsterdam/NL. doi: 10.1109/WHISPERS52202.2021.9484014. ISBN 978-166543601-4. ISSN 2158-6276.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484014
Abstract
Graph convolutional networks (GCNs) have been success-fully and widely applied in computer vision and machinelearning fields. As a powerful tool, GCNs have recentlyreceived increasing attention in the remote sensing commu-nity, e.g., hyperspectral image (HSI) classification. However,the application ability of GCNs in identifying the materi-als via spectral signatures remains limited, since traditionalGCNs fail to extract node features for large-scale graphs ef-ficiently. Also, simultaneous consideration of all samplesin GCNs tends to obtain poor representations, possibly dueto the vanishing gradient problem. To this end, we in thispaper develop a novel mini-batch GCN (miniGCN) for HSimage classification. More importantly, miniGCN not onlycan effectively train the network via mini-batch sampling ina supervised way, but also directly infer new samples (out-of-sample) without re-training GCNs. Experiments conductedon two commonly-used HSI datasets demonstrate the superi-ority of miniGCN over other state-of-the-art network archi-tectures.
Item URL in elib: | https://elib.dlr.de/144440/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | March 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1109/WHISPERS52202.2021.9484014 | ||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||
ISSN: | 2158-6276 | ||||||||||||||||||||||||
ISBN: | 978-166543601-4 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Classification, deep learning, graph con-volutional network, hyperspectral image, mini-batch | ||||||||||||||||||||||||
Event Title: | WHISPERS 2021 | ||||||||||||||||||||||||
Event Location: | Amsterdam/NL | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 24 March 2021 | ||||||||||||||||||||||||
Event End Date: | 26 March 2021 | ||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 08 Oct 2021 12:17 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:43 |
Repository Staff Only: item control page