Hong, Danfeng und Gao, Lianru und Wu, Xin und Yao, Jing und Zhang, Bing (2021) Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification. In: 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021, Seiten 1-4. WHISPERS 2021, 2021-03-24 - 2021-03-26, Amsterdam/NL. doi: 10.1109/WHISPERS52202.2021.9484014. ISBN 978-166543601-4. ISSN 2158-6276.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484014
Kurzfassung
Graph convolutional networks (GCNs) have been success-fully and widely applied in computer vision and machinelearning fields. As a powerful tool, GCNs have recentlyreceived increasing attention in the remote sensing commu-nity, e.g., hyperspectral image (HSI) classification. However,the application ability of GCNs in identifying the materi-als via spectral signatures remains limited, since traditionalGCNs fail to extract node features for large-scale graphs ef-ficiently. Also, simultaneous consideration of all samplesin GCNs tends to obtain poor representations, possibly dueto the vanishing gradient problem. To this end, we in thispaper develop a novel mini-batch GCN (miniGCN) for HSimage classification. More importantly, miniGCN not onlycan effectively train the network via mini-batch sampling ina supervised way, but also directly infer new samples (out-of-sample) without re-training GCNs. Experiments conductedon two commonly-used HSI datasets demonstrate the superi-ority of miniGCN over other state-of-the-art network archi-tectures.
| elib-URL des Eintrags: | https://elib.dlr.de/144440/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | März 2021 | ||||||||||||||||||||||||
| Erschienen in: | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| DOI: | 10.1109/WHISPERS52202.2021.9484014 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
| ISSN: | 2158-6276 | ||||||||||||||||||||||||
| ISBN: | 978-166543601-4 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Classification, deep learning, graph con-volutional network, hyperspectral image, mini-batch | ||||||||||||||||||||||||
| Veranstaltungstitel: | WHISPERS 2021 | ||||||||||||||||||||||||
| Veranstaltungsort: | Amsterdam/NL | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 24 März 2021 | ||||||||||||||||||||||||
| Veranstaltungsende: | 26 März 2021 | ||||||||||||||||||||||||
| Veranstalter : | IEEE | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
| Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
| Hinterlegt am: | 08 Okt 2021 12:17 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags