Hong, Danfeng und Gao, Lianru und Wu, Xin und Yao, Jing und Zhang, Bing (2021) Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification. In: 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021, Seiten 1-4. WHISPERS 2021, 2021-03-24 - 2021-03-26, Amsterdam/NL. doi: 10.1109/WHISPERS52202.2021.9484014. ISBN 978-166543601-4. ISSN 2158-6276.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484014
Kurzfassung
Graph convolutional networks (GCNs) have been success-fully and widely applied in computer vision and machinelearning fields. As a powerful tool, GCNs have recentlyreceived increasing attention in the remote sensing commu-nity, e.g., hyperspectral image (HSI) classification. However,the application ability of GCNs in identifying the materi-als via spectral signatures remains limited, since traditionalGCNs fail to extract node features for large-scale graphs ef-ficiently. Also, simultaneous consideration of all samplesin GCNs tends to obtain poor representations, possibly dueto the vanishing gradient problem. To this end, we in thispaper develop a novel mini-batch GCN (miniGCN) for HSimage classification. More importantly, miniGCN not onlycan effectively train the network via mini-batch sampling ina supervised way, but also directly infer new samples (out-of-sample) without re-training GCNs. Experiments conductedon two commonly-used HSI datasets demonstrate the superi-ority of miniGCN over other state-of-the-art network archi-tectures.
elib-URL des Eintrags: | https://elib.dlr.de/144440/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Revisiting Graph Convolutional Networks with Mini-Batch Sampling for Hyperspectral Image Classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | März 2021 | ||||||||||||||||||||||||
Erschienen in: | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/WHISPERS52202.2021.9484014 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
ISSN: | 2158-6276 | ||||||||||||||||||||||||
ISBN: | 978-166543601-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Classification, deep learning, graph con-volutional network, hyperspectral image, mini-batch | ||||||||||||||||||||||||
Veranstaltungstitel: | WHISPERS 2021 | ||||||||||||||||||||||||
Veranstaltungsort: | Amsterdam/NL | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 24 März 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 26 März 2021 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Hinterlegt am: | 08 Okt 2021 12:17 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags