Raffin, Antonin and Kober, Jens and Stulp, Freek (2021) Smooth Exploration for Robotic Reinforcement Learning. In: Conference on Robot Learning (CoRL) 2021. Proceedings of Machine Learning Research. Conference on Robot Learning (CoRL) 2021, 2021, London, UK.
![]() |
PDF
1MB |
Abstract
Reinforcement learning (RL) enables robots to learn skills from interactions with the real world. In practice, the unstructured step-based exploration used in Deep RL -- often very successful in simulation -- leads to jerky motion patterns on real robots. Consequences of the resulting shaky behavior are poor exploration, or even damage to the robot. We address these issues by adapting state-dependent exploration (SDE) to current Deep RL algorithms. To enable this adaptation, we propose two extensions to the original SDE, using more general features and re-sampling the noise periodically, which leads to a new exploration method generalized state-dependent exploration (gSDE). We evaluate gSDE both in simulation, on PyBullet continuous control tasks, and directly on three different real robots: a tendon-driven elastic robot, a quadruped and an RC car. The noise sampling interval of gSDE enables a compromise between performance and smoothness, which allows training directly on the real robots without loss of performance.
Item URL in elib: | https://elib.dlr.de/144423/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Smooth Exploration for Robotic Reinforcement Learning | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2021 | ||||||||||||||||
Journal or Publication Title: | Conference on Robot Learning (CoRL) 2021 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Publisher: | Proceedings of Machine Learning Research | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Robotics, Reinforcement Learning, Exploration, Real World | ||||||||||||||||
Event Title: | Conference on Robot Learning (CoRL) 2021 | ||||||||||||||||
Event Location: | London, UK | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||
Deposited By: | Raffin, Antonin | ||||||||||||||||
Deposited On: | 29 Nov 2021 11:49 | ||||||||||||||||
Last Modified: | 29 Nov 2021 11:49 |
Repository Staff Only: item control page