Raffin, Antonin und Kober, Jens und Stulp, Freek (2021) Smooth Exploration for Robotic Reinforcement Learning. In: 5th Conference on Robot Learning, CoRL 2021. Proceedings of Machine Learning Research. Conference on Robot Learning (CoRL) 2021, 2021, London, UK. ISSN 2640-3498.
PDF
1MB |
Kurzfassung
Reinforcement learning (RL) enables robots to learn skills from interactions with the real world. In practice, the unstructured step-based exploration used in Deep RL -- often very successful in simulation -- leads to jerky motion patterns on real robots. Consequences of the resulting shaky behavior are poor exploration, or even damage to the robot. We address these issues by adapting state-dependent exploration (SDE) to current Deep RL algorithms. To enable this adaptation, we propose two extensions to the original SDE, using more general features and re-sampling the noise periodically, which leads to a new exploration method generalized state-dependent exploration (gSDE). We evaluate gSDE both in simulation, on PyBullet continuous control tasks, and directly on three different real robots: a tendon-driven elastic robot, a quadruped and an RC car. The noise sampling interval of gSDE enables a compromise between performance and smoothness, which allows training directly on the real robots without loss of performance.
elib-URL des Eintrags: | https://elib.dlr.de/144423/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Smooth Exploration for Robotic Reinforcement Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | 5th Conference on Robot Learning, CoRL 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Verlag: | Proceedings of Machine Learning Research | ||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Robotics, Reinforcement Learning, Exploration, Real World | ||||||||||||||||
Veranstaltungstitel: | Conference on Robot Learning (CoRL) 2021 | ||||||||||||||||
Veranstaltungsort: | London, UK | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsdatum: | 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||
Hinterlegt von: | Raffin, Antonin | ||||||||||||||||
Hinterlegt am: | 29 Nov 2021 11:49 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags