elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades

Carstens, V. und Belz, J. (2000) Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades. 45th International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, May 8-11 2000.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The aeroelastic behavior of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultanesously integrated in time. In this paper a technique is presented which analyzes the aeroelastic behavior of an oscillating compressor cascade in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by an Euler upwind code. The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed as such that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of twenty compressor blades performing torsional vibrations in transonic flow are presented. For subsonic flow, the differences between time domain and frequency domain results are of negligible order. For transonic flow, however, where vibrating shocks and a temporarily choked flow in the blade channel dominate the unsteady fflow, the energy transfer between fluid and structure is no longer comparable to that of a linear system. It is demonstrated that the application of the time domain method leads to a significantly different aeroelastic behaviour of the blade assembly including a shift of the stability boundary.

elib-URL des Eintrags:https://elib.dlr.de/14413/
Dokumentart:Konferenzbeitrag (Paper)
Zusätzliche Informationen: LIDO-Berichtsjahr=2003, monograph_id=2000-GT-381,
Titel:Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Carstens, V.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Belz, J.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2000
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
ASME, NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Name der Reihe:ASME Paper
Status:veröffentlicht
Stichwörter:Aeroelasticity of Turbomachines, Unsteady Aerodynamics, Fluid-Structure Coupling,Cascade Flutter, Tíme Domain Method
Veranstaltungstitel:45th International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, May 8-11 2000
Veranstalter :International Gas Turbine Institute
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L TT - Triebwerkstechnologien
DLR - Teilgebiet (Projekt, Vorhaben):NICHT SPEZIFIZIERT
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik
Hinterlegt von: Erdmann, Daniela
Hinterlegt am:16 Sep 2005
Letzte Änderung:14 Jan 2010 21:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.