Wang, Yuanyuan and Qian, Kun and Zhu, Xiao Xiang (2021) Efficient SAR tomographic inversion via sparse Bayesian learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-5. IEEE. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554296.
PDF
- Only accessible within DLR
441kB |
Abstract
SAR tomographic inversion (TomoSAR) has been widely employed for 3-D urban mapping. Existing algorithms are mostly based on an explicit inversion of the SAR imaging model, which are often computationally expensive for large scale processing. This is especially true for compressive sensing-based TomoSAR algorithms. Previous literature showed perspective of using data-driven methods like PCA and kernel PCA to decompose the signal and reduce the computational complexity of parameter inversion. This paper gives a preliminary demonstration of a data-driven TomoSAR method based on sparse Bayesian learning. Experiments on simulated data show the proposed algorithm can provide moderate detection rate and super-resolution power, comparing to the state-of-the-art compressive sensing based algorithms. As the proposed algorithm is purely based on conventional (non-superresolving) estimators, it is much more computationally efficient than compressive sensing based ones. This gives us a perspective of employing it for large scale TomoSAR processing. Experiments on real data will be given in the final paper.
Item URL in elib: | https://elib.dlr.de/143886/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Efficient SAR tomographic inversion via sparse Bayesian learning | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2021 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554296 | ||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | SAR tomography, sparse learning, machine learning, data-driven, InSAR, SAR | ||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||
Event Location: | Brussels, Belgium | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 12 July 2021 | ||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Wang, Yuanyuan | ||||||||||||||||
Deposited On: | 14 Sep 2021 13:13 | ||||||||||||||||
Last Modified: | 07 Jun 2024 09:57 |
Repository Staff Only: item control page