Kersten, Jens and Bongard, Jan and Klan, Friederike (2021) Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content. In: 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021, pp. 744-754. ISCRAM 2021, 2021-05, Blacksburg, VA, USA / online. ISBN 978-194937361-5. ISSN 2411-3387.
PDF
2MB |
Abstract
Twitter is an immediate and almost ubiquitous platform and therefore can be a valuable source of information during disasters. Current methods for identifying and classifying crisis-related content are often based on single tweets, i.e., already known information from the past is neglected. In this paper, the combination of tweet-wise pre-trained neural networks and unsupervised semantic clustering is proposed and investigated. The intention is to (1) enhance the generalization capability of pre-trained models, (2) to be able to handle massive amounts of stream data, (3) to reduce information overload by identifying potentially crisis-related content, and (4) to obtain a semantically aggregated data representation that allows for further automated, manual and visual analyses. Latent representations of each tweet based on pre-trained sentence embedding models are used for both, clustering and tweet classification. For a fast, robust and time-continuous processing, subsequent time periods are clustered individually according to a Chinese restaurant process. Clusters without any tweet classified as crisis-related are pruned. Data aggregation over time is ensured by merging semantically similar clusters. A comparison of our hybrid method to a similar clustering approach, as well as first quantitative and qualitative results from experiments with two different labeled data sets demonstrate the great potential for crisis-related Twitter stream analyses.
Item URL in elib: | https://elib.dlr.de/143774/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | May 2021 | ||||||||||||||||||||
Journal or Publication Title: | 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 744-754 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Series Name: | Proceedings of the 18th ISCRAM Conference | ||||||||||||||||||||
ISSN: | 2411-3387 | ||||||||||||||||||||
ISBN: | 978-194937361-5 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Information Overload Reduction, Semantic Clustering, Crisis Informatics, Twitter Stream | ||||||||||||||||||||
Event Title: | ISCRAM 2021 | ||||||||||||||||||||
Event Location: | Blacksburg, VA, USA / online | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Date: | May 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Exploration of citizen science methods, R - QS-Project_04 Big-Data-Plattform | ||||||||||||||||||||
Location: | Jena | ||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science > Citizen Science | ||||||||||||||||||||
Deposited By: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||
Deposited On: | 18 Oct 2021 08:22 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:43 |
Repository Staff Only: item control page