Kersten, Jens und Bongard, Jan und Klan, Friederike (2021) Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content. In: 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021, Seiten 744-754. ISCRAM 2021, 2021-05, Blacksburg, VA, USA / online. ISBN 978-194937361-5. ISSN 2411-3387.
PDF
2MB |
Kurzfassung
Twitter is an immediate and almost ubiquitous platform and therefore can be a valuable source of information during disasters. Current methods for identifying and classifying crisis-related content are often based on single tweets, i.e., already known information from the past is neglected. In this paper, the combination of tweet-wise pre-trained neural networks and unsupervised semantic clustering is proposed and investigated. The intention is to (1) enhance the generalization capability of pre-trained models, (2) to be able to handle massive amounts of stream data, (3) to reduce information overload by identifying potentially crisis-related content, and (4) to obtain a semantically aggregated data representation that allows for further automated, manual and visual analyses. Latent representations of each tweet based on pre-trained sentence embedding models are used for both, clustering and tweet classification. For a fast, robust and time-continuous processing, subsequent time periods are clustered individually according to a Chinese restaurant process. Clusters without any tweet classified as crisis-related are pruned. Data aggregation over time is ensured by merging semantically similar clusters. A comparison of our hybrid method to a similar clustering approach, as well as first quantitative and qualitative results from experiments with two different labeled data sets demonstrate the great potential for crisis-related Twitter stream analyses.
elib-URL des Eintrags: | https://elib.dlr.de/143774/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2021 | ||||||||||||||||||||
Erschienen in: | 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 744-754 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Name der Reihe: | Proceedings of the 18th ISCRAM Conference | ||||||||||||||||||||
ISSN: | 2411-3387 | ||||||||||||||||||||
ISBN: | 978-194937361-5 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Information Overload Reduction, Semantic Clustering, Crisis Informatics, Twitter Stream | ||||||||||||||||||||
Veranstaltungstitel: | ISCRAM 2021 | ||||||||||||||||||||
Veranstaltungsort: | Blacksburg, VA, USA / online | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | Mai 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Erforschung Bürgerwissenschaftlicher Methoden, R - QS-Projekt_04 Big-Data-Plattform | ||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||||||||||
Hinterlegt von: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||
Hinterlegt am: | 18 Okt 2021 08:22 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags