Kersten, Jens und Bongard, Jan und Klan, Friederike (2021) Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content. In: 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021, Seiten 744-754. ISCRAM 2021, 2021-05, Blacksburg, VA, USA / online. ISBN 978-194937361-5. ISSN 2411-3387.
|
PDF
2MB |
Kurzfassung
Twitter is an immediate and almost ubiquitous platform and therefore can be a valuable source of information during disasters. Current methods for identifying and classifying crisis-related content are often based on single tweets, i.e., already known information from the past is neglected. In this paper, the combination of tweet-wise pre-trained neural networks and unsupervised semantic clustering is proposed and investigated. The intention is to (1) enhance the generalization capability of pre-trained models, (2) to be able to handle massive amounts of stream data, (3) to reduce information overload by identifying potentially crisis-related content, and (4) to obtain a semantically aggregated data representation that allows for further automated, manual and visual analyses. Latent representations of each tweet based on pre-trained sentence embedding models are used for both, clustering and tweet classification. For a fast, robust and time-continuous processing, subsequent time periods are clustered individually according to a Chinese restaurant process. Clusters without any tweet classified as crisis-related are pruned. Data aggregation over time is ensured by merging semantically similar clusters. A comparison of our hybrid method to a similar clustering approach, as well as first quantitative and qualitative results from experiments with two different labeled data sets demonstrate the great potential for crisis-related Twitter stream analyses.
| elib-URL des Eintrags: | https://elib.dlr.de/143774/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Combining Supervised and Unsupervised Learning to Detect and Semantically Aggregate Crisis-Related Twitter Content | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Mai 2021 | ||||||||||||||||||||
| Erschienen in: | 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Seitenbereich: | Seiten 744-754 | ||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||
| Name der Reihe: | Proceedings of the 18th ISCRAM Conference | ||||||||||||||||||||
| ISSN: | 2411-3387 | ||||||||||||||||||||
| ISBN: | 978-194937361-5 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Information Overload Reduction, Semantic Clustering, Crisis Informatics, Twitter Stream | ||||||||||||||||||||
| Veranstaltungstitel: | ISCRAM 2021 | ||||||||||||||||||||
| Veranstaltungsort: | Blacksburg, VA, USA / online | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsdatum: | Mai 2021 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Erforschung Bürgerwissenschaftlicher Methoden, R - QS-Projekt_04 Big-Data-Plattform | ||||||||||||||||||||
| Standort: | Jena | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||||||||||
| Hinterlegt von: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||
| Hinterlegt am: | 18 Okt 2021 08:22 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags