Alms, Robert und Noulis, Aristeidis und Mintsis, Evangelos und Lücken, Leonhard und Wagner, Peter (2022) Reinforcement Learning-based Traffic Control: Mitigating the Adverse Impacts of Control Transitions. IEEE Open Journal of Intelligent Transportation Systems, Seiten 187-198. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/OJITS.2022.3158688. ISSN 2687-7813.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Kurzfassung
An important aspect of automated driving is to handle situations where it fails or is not allowed in specific traffic situations. This case study explores means, by which control transitions in a mixed autonomy system can be organized in order to minimize their adverse impact on traffic flow. We assess a number of different approaches for a coordinated management of transitions, covering classic traffic management paradigms and AI-driven controls. We demonstrate that they yield excellent results when compared to a do-nothing scenario. This text further details a model for control transitions that is the basis for the simulation study presented. The results encourage the deployment of reinforcement learning on the control problem for a scenario with mandatory take-over requests.
elib-URL des Eintrags: | https://elib.dlr.de/143411/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Reinforcement Learning-based Traffic Control: Mitigating the Adverse Impacts of Control Transitions | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 11 März 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Open Journal of Intelligent Transportation Systems | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/OJITS.2022.3158688 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 187-198 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Name der Reihe: | IEEE | ||||||||||||||||||||||||
ISSN: | 2687-7813 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Connected automated vehicles (CAV), reinforcement learning (RL), take-over request (ToR), traffic management (TM), transition of control (ToC). | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Energie und Verkehr (alt) | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik Institut für Verkehrssystemtechnik > Kooperative Systeme, BA | ||||||||||||||||||||||||
Hinterlegt von: | Alms, Robert | ||||||||||||||||||||||||
Hinterlegt am: | 25 Mär 2022 13:24 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Mai 2023 10:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags