Xie, Yuxing and Schindler, Konrad and Tian, Jiaojiao and Zhu, Xiao Xiang (2021) Exploring Cross-city Semantic Segmentation of ALS Point Clouds. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, pp. 247-254. ISPRS 2021, 2021-07-05 - 2021-07-09, Nice, France (virtual event). doi: 10.5194/isprs-archives-XLIII-B2-2021-247-2021. ISSN 1682-1750.
PDF
2MB |
Abstract
Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work, we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen point density, intensity features, and further dataset biases like lack of diversity.
Item URL in elib: | https://elib.dlr.de/142951/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Exploring Cross-city Semantic Segmentation of ALS Point Clouds | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Volume: | XLIII | ||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B2-2021-247-2021 | ||||||||||||||||||||
Page Range: | pp. 247-254 | ||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Point Clouds, Semantic Segmentation, Deep Learning, Transfer Learning, Domain Adaptation | ||||||||||||||||||||
Event Title: | ISPRS 2021 | ||||||||||||||||||||
Event Location: | Nice, France (virtual event) | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 5 July 2021 | ||||||||||||||||||||
Event End Date: | 9 July 2021 | ||||||||||||||||||||
Organizer: | International Society for Photogrammetry and Remote Sensing (ISPRS) | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Optical remote sensing | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Xie, Yuxing | ||||||||||||||||||||
Deposited On: | 13 Jul 2021 10:31 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page