Xie, Yuxing und Schindler, Konrad und Tian, Jiaojiao und Zhu, Xiao Xiang (2021) Exploring Cross-city Semantic Segmentation of ALS Point Clouds. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, Seiten 247-254. ISPRS 2021, 2021-07-05 - 2021-07-09, Nice, France (virtual event). doi: 10.5194/isprs-archives-XLIII-B2-2021-247-2021. ISSN 1682-1750.
PDF
2MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2021/247/2021/isprs-archives-XLIII-B2-2021-247-2021.pdf
Kurzfassung
Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work, we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen point density, intensity features, and further dataset biases like lack of diversity.
elib-URL des Eintrags: | https://elib.dlr.de/142951/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Exploring Cross-city Semantic Segmentation of ALS Point Clouds | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | XLIII | ||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B2-2021-247-2021 | ||||||||||||||||||||
Seitenbereich: | Seiten 247-254 | ||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Point Clouds, Semantic Segmentation, Deep Learning, Transfer Learning, Domain Adaptation | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2021 | ||||||||||||||||||||
Veranstaltungsort: | Nice, France (virtual event) | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 5 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 9 Juli 2021 | ||||||||||||||||||||
Veranstalter : | International Society for Photogrammetry and Remote Sensing (ISPRS) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Xie, Yuxing | ||||||||||||||||||||
Hinterlegt am: | 13 Jul 2021 10:31 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags