elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Robust Design of 3D Shock Control Bumps to Transport Aircraft under Realistic Uncertainties

Sabater Campomanes, Christian und Görtz, Stefan (2021) Robust Design of 3D Shock Control Bumps to Transport Aircraft under Realistic Uncertainties. 32nd Congress of the International Council of the Aeronautical Sciences (ICAS2021), 2021-09-06 - 2021-09-10, Shanghai.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.icas.org/archive/paper_library.php

Kurzfassung

With the continuous increase in the number of commercial flights, environmental and economic concerns are key drivers towards the reduction of operational cost and emission of greenhouse gasses. The use of aerodynamic shape optimization plays a key role in reducing aerodynamic drag and the overall carbon footprint of aircraft. It has been regularly carried out in a deterministic fashion, neglecting uncertainty. However, the sensitivity of the optimal shape to operational and environmental uncertainties can affect the real aircraft performance. A possible solution to increase the robustness of existing aircraft is the development of retrofits that are tailored to the current airliner's operations. Shock control bumps are attractive retrofit for aircraft flying in routes at considerably higher speeds than the design point. The objective of this paper is the robust design of a 3D array of shock control bumps that can be retrofitted to the XRF1 transport aircraft configuration. Realistic uncertainties in Mach number, lift coefficient and altitude are extracted following aircraft surveillance data using the OpenSky Network for a selected air route. A tailored Gradient-Based Robust Design methodology that combines the adjoint method with Gaussian Processes is used for the optimization under these uncertainties. The robust optimum array of bumps is able to mitigate the normal shock wave over the upper surface of the wing, reducing the average drag by 3.2% compared to the clean wing. More importantly, its performance is superior compared to the configurations obtained at single-point and multi-point optimization, showcasing the benefits of a probabilistic formulation for the retrofit of 3D shock control bumps.

elib-URL des Eintrags:https://elib.dlr.de/142935/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Robust Design of 3D Shock Control Bumps to Transport Aircraft under Realistic Uncertainties
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sabater Campomanes, ChristianChristian.SabaterCampomanes (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Görtz, StefanStefan.Goertz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:6 September 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:robust design, gradient-based optimization, aerodynamics, CFD, Shock Control Bumps, Uncertainty Quantification
Veranstaltungstitel:32nd Congress of the International Council of the Aeronautical Sciences (ICAS2021)
Veranstaltungsort:Shanghai
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 September 2021
Veranstaltungsende:10 September 2021
Veranstalter :ICAS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Görtz, Stefan
Hinterlegt am:05 Jul 2021 08:46
Letzte Änderung:24 Apr 2024 20:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.